PART 1: FIELD EXPLORATION ON THE CORAL REEF STRUCTURES OF THE FARASAN ISLANDS AND THE JAZAN REGION, KINGDOM OF SAUDI ARABIA: THEIR IMPLICATIONS ON THE SEA-LEVEL CHANGE TECTONIC HISTORY, AND THE COASTAL ARCHAEOLOGY OF THE REGION

By

GEOFF N. BAILEY, NAJEEB M.A. RASUL, ROBYN H. INGLIS, WILLIAM BOSWORTH NAWAF A. WIDINLY, AND ALI O. SAEEDI

Name	Signaure	Date
Head of Dept.		
Najeeb Rasul		
Nawaf Widinly		
Ali Saeedi		
Dr. Duyanen (editor)		
Majed Ahmadi (Translator)		

TECHNICAL REPORT SGS-TR-2020-4

1442 H 2020 G

A Technical Report prepared by the Saudi Geological Survey, Jeddah, Kingdom of Saudi Arabia

The geologic work on which this report is based was performed through the Saudi Geological Survey's Subproject, with the title, *Part 1: Field exploration on the coral reef structures of the Farasan Islands and the Jazan Region, Kingdom of Saudi Arabia: Their implications on the sea-level change, tectonic history, and the coastal archaeology of the region.* This report was edited and reviewed by the editorial staff of the Saudi Geological Survey.

This report should be properly cited using the full serial number, the author's name(s), and the year of publication. The correct citation for this report is:

Bailey, G.N., Rasul, N.M.A., Inglis, R.H., Bosworth, W., Widinly, N.A., and Saeedi, A.O., 2020, Part 1: Field exploration on the coral reef structures of the Farasan Islands and the Jazan Region, Kingdom of Saudi Arabia: Their implications on the sea-level change, tectonic history, and the coastal archaeology of the region: Saudi Geological Survey Technical Report SGS-TR-2020-4, 19 p., 19 figs., 3 apps.

Index map of the Arabian Peninsula

INTELLECTUAL PROPERTY RIGHTS: This report is published by the Saudi Geological Survey, and is governed by copyright laws. No part of this publication may be reproduced, distributed, or stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, or photographic, without prior written permission of the Saudi Geological Survey (copyright owner). This report is also available for sale to the public in hard copy format or on CD in PDF format. Please contact the SGS Business Development Center at the Jeddah address for more information.

For more information about the Saudi Geological Survey visit our website <u>www.sgs.org.sa</u> or write to or visit our headquarters in Jeddah or our office in Riyadh.

Saudi Geological Survey Post Office Box 54141, Jeddah 21514 Tel. (+966-12) 619-5000 Saudi Geological Survey-Riyadh Office Post Office Box 6955, Riyadh 11452 Tel. (+966-11) 476-5000

TABLE OF CONTENTS

ABSTRACT	Page	?
ARABIC ABSTRACT2INTRODUCTION3ARCHAEOLOGICAL RELEVANCE3TECTONIC RELEVANCE4OBJECTIVES OF THE SURVEY5METHODS5PRELIMINARY RESULTS9Farasan Islands9Mursa al Hesen9Sulayn and Abalat Islands9Ras Shida9Jizan mainland13Dhahaban Quarry13Al Birk Region13Al Qamah15CONCLUSIONS16ACKNOWLEDGMENTS16DUNDADIONICAL16	ABSTRACT 1	-
INTRODUCTION	ARABIC ABSTRACT	2
ARCHAEOLOGICAL RELEVANCE 3 TECTONIC RELEVANCE 4 OBJECTIVES OF THE SURVEY 5 METHODS 5 PRELIMINARY RESULTS 9 Farasan Islands 9 Mursa al Hesen 9 Sulayn and Abalat Islands 9 Jizan mainland 13 Dhahaban Quarry 13 Al Birk Region 13 Al Qamah 15 CONCLUSIONS 15 RECOMMENDATION 16 ACKNOWLEDGMENTS 16	INTRODUCTION	,
TECTONIC RELEVANCE 4 OBJECTIVES OF THE SURVEY. 5 METHODS 5 PRELIMINARY RESULTS 9 Farasan Islands 9 Mursa al Hesen 9 Sulayn and Abalat Islands. 9 Ras Shida 9 Jizan mainland 13 Dhahaban Quarry. 13 Al Birk Region 13 Al Qamah 15 CONCLUSIONS 15 RECOMMENDATION 16 ACKNOWLEDGMENTS 17	ARCHAEOLOGICAL RELEVANCE	;
OBJECTIVES OF THE SURVEY. 5 METHODS 5 PRELIMINARY RESULTS 9 Farasan Islands 9 Mursa al Hesen 9 Sulayn and Abalat Islands 9 Ras Shida 9 Jizan mainland 13 Dhahaban Quarry. 13 Al Birk Region 13 Al Qamah 15 CONCLUSIONS 15 RECOMMENDATION 16 ACKNOWLEDGMENTS 16	TECTONIC RELEVANCE	É
METHODS 5 PRELIMINARY RESULTS 9 Farasan Islands 9 Mursa al Hesen 9 Sulayn and Abalat Islands 9 Ras Shida 9 Jizan mainland 13 Dhahaban Quarry 13 Al Birk Region 13 Al Qamah 15 CONCLUSIONS 15 RECOMMENDATION 16 ACKNOWLEDGMENTS 16	OBJECTIVES OF THE SURVEY	;
PRELIMINARY RESULTS 9 Farasan Islands 9 Mursa al Hesen 9 Sulayn and Abalat Islands 9 Ras Shida 9 Jizan mainland 13 Dhahaban Quarry 13 Al Birk Region 13 Al Qamah 15 CONCLUSIONS 15 RECOMMENDATION 16 ACKNOWLEDGMENTS 16	METHODS	;
Farasan Islands9Mursa al Hesen9Sulayn and Abalat Islands9Ras Shida9Jizan mainland13Dhahaban Quarry13Al Birk Region13Al Qamah15CONCLUSIONS15RECOMMENDATION16ACKNOWLEDGMENTS16	PRELIMINARY RESULTS)
Mursa al Hesen9Sulayn and Abalat Islands9Ras Shida9Jizan mainland13Dhahaban Quarry13Al Birk Region13Al Qamah15CONCLUSIONS15RECOMMENDATION16ACKNOWLEDGMENTS16	Farasan Islands)
Sulayn and Abalat Islands.9Ras Shida9Jizan mainland13Dhahaban Quarry.13Al Birk Region13Al Qamah15CONCLUSIONS15RECOMMENDATION16ACKNOWLEDGMENTS16	Mursa al Hesen)
Ras Shida9Jizan mainland13Dhahaban Quarry.13Al Birk Region13Al Qamah15CONCLUSIONS15RECOMMENDATION16ACKNOWLEDGMENTS16	Sulayn and Abalat Islands)
Jizan mainland	Ras Shida)
Dhahaban Quarry	Jizan mainland	;
Al Birk Region 13 Al Qamah 15 CONCLUSIONS 15 RECOMMENDATION 16 ACKNOWLEDGMENTS 16	Dhahaban Quarry	;
Al Qamah	Al Birk Region	;
CONCLUSIONS	Al Qamah	;
RECOMMENDATION	CONCLUSIONS15	;
ACKNOWLEDGMENTS	RECOMMENDATION	5
	ACKNOWLEDGMENTS	Ś
REFERENCES 1/	REFERENCES	7
APPENDICES	APPENDICES	

FIGURES

Multiple Late Pleistocene coral terraces in the Sulayn island group of the Farasan archipelago	3
Series of shell mounds in the Janaba Bay, Farasan Kabir, showing a large mound in the foreground	
with the GPS measuring equipment used in the survey. Similar shell mounds are visible in the middle	
distance along the edge of a palaeoshoreline that is now ~1 km inland from the modern shoreline	4
Sampling a Pleistocene coral terrace on Farasan Kabir west of Mursa al Hesen. Both corals and Tridacna	
clam shells (shown here) were sampled. Note the staff with a GPS receiver, mounted the sample, used	
for both precision measurement of position and elevation.	6
The Tridacna clam and the labelled bag	6
Locations of the stations on the Farasan archipelago and along the Red Sea coastline at Harrat Al Birk.	
The digital elevation model used is from the US National Oceanic and Atmospheric Administration	7
A stone mound south of Al Qamah in the Harrat Al Birk, resting on a Pleistocene terrace, which is	
now located several kilometers from the present shoreline. More than a dozen of these mounds are	
present in this location and were built for human burials	8
Shell midden located on one of the Abalat islands within the Farasan archipelago. The shells are	
predominantly pearl oysters and are associated with the remains of a nearby stone structure. This site	
probably represents a pearl fishermen's camp of relatively recent date	8
A fishing village in Mursa al Hesen on Farasan Kabir. This photograph was taken from the top of a	
coral terrace that was up-thrown relative to the plain below, with a topographic offset of about 30 m	9
Coral terraces and small fishing village in the Murrabaah Island	10
Massive coral reef section, capped by 9-m terrace in the large island within the Abalat group	10
The highest coral terrace in Ras Shida.	11
Upper terrace in Ras Shida, showing a sinkhole and a surface joint fracture	11
Shell mound of mid-Holocene, age sitting on the 3-m terrace, with the Ras Shida headland visible from	
a far distance. The edge of the coral terrace was undercut by marine erosion	12
The Farasan 3-m coral terrace, showing the degree of undercutting by marine erosion	12
	Multiple Late Pleistocene coral terraces in the Sulayn island group of the Farasan archipelago Series of shell mounds in the Janaba Bay, Farasan Kabir, showing a large mound in the foreground with the GPS measuring equipment used in the survey. Similar shell mounds are visible in the middle distance along the edge of a palaeoshoreline that is now -1 km inland from the modern shoreline

CONTENTS (Cont'd.)

Page

Figure 15.	Unit 2, comprising a debris flow conglomerate within the wadi, cutting through the Dhahaban quarry. The clasts include cobbles of both the basalt and the Pleistocene corals that crop out in other parts of the quarry.	
	Stone artefacts were also recovered from this same deposit	13
Figure 16.	The debris flow in the Dhahaban quarry, showing two basalt artefacts embedded in the deposit	14
Figure 17.	The shell midden at Al Birk. The midden comprises a relatively thin and superficial deposit, spread over quite a large area. The stone tools that were scattered across the surface are made from the local	
	basalt and belong to a much earlier period than the shells. Large boulders of basalt are clearly visible around the edge of the area as can be seen in this image	14
Figure 18.	Extensive coral terrace that was banked up against a volcanic cinder cone on the east side of the coast guard radar station south of Al Birk. The corals in this location are very highly altered and generally unsuitable for	
	U-series age dating.	15
Figure 19.	Boulders with south Arabic scripts were found on the eastern slope of the cinder cone	16

Appendices

Appendix 1. Dating samples.

Appendix 2. DGPS measurements

Appendix 3. Farasan Station 3 (Ras Shida) DGPS measurements located on a Google Earth map.

PART 1: FIELD EXPLORATION ON THE CORAL REEF STRUCTURES OF THE FARASAN ISLANDS AND THE JAZAN REGION, KINGDOM OF SAUDI ARABIA: THEIR IMPLICATIONS ON THE SEA-LEVEL CHANGE, TECTONIC HISTORY, AND THE COASTAL ARCHAEOLOGY OF THE REGION

By

GEOFF N. BAILEY¹, NAJEEB M.A. RASUL², ROBYN H. INGLIS¹, WILLIAM BOSWORTH³ NAWAF A. WIDINLY², AND ALI O. SAEEDI²

ABSTRACT

This report presents the initial results of a survey on the coastal features of the provinces of Asir and Jizan in SW Saudi Arabia and the Farasan Islands. This survey was prompted by the ongoing research on sealevel change, tectonic history, and coastal archaeology of the region, and it is concentrated on the cemented coral-reef structures that are now above the modern sea-level due to a change in sea levels, tectonic uplift, or a combination of both factors. Seventy-five locations were examined, with the collection of over 50 samples for geological, chronological, and palaeoecological analyses and 143 DGPS measurements of elevation.

Keywords: Sea-level changes, Raised coral terraces, Tectonics, Farasan Islands, Stone Age archaeology, Saudi Arabia

¹DISPERSE Project, University of York, York, United Kingdom ²Saudi Geological Survey, Jeddah, Kingdom of Saudi Arabia

³Apache Egypt Companies, Cairo, Egypt

الجزء الأول: الاستكشاف الميداني لهياكل الشعاب المرجانية في منطقة فرسان – جيزان، المملكة العربية السعودية: آثارها على تغير مستوى سطح البحر والتاريخ التكتوني والآثار الساحلية في المنطقة

إعداد جيوف بيلي، نجيب رسول، روبين إنجليس، وليام بوسوورث، نواف ودينلي، علي الصعيدي

الملخّص

يعرض هذا التقرير النتائج الأولية لمسح المعالم الساحلية في محافظتي عسير وجيزان بجنوب غرب المملكة العربية السعودية وجزر فرسان. تم إجراء المسح من خلال البحث الجاري والمستمر حول تغير مستوى سطح مياه البحر والتاريخ التكتوني والآثار الساحلية للمنطقة. ركز المسح على متكونات الشعاب المرجانية الأسمنتية التي هي الآن فوق مستوى سطح ماء البحر الحديث بسبب ارتفاع مستويات سطح ماء البحر ، أو الحركات التكتونية أو كلاهما معا. تم فحص خمسة وسبعين موقعًا ، مع جمع أكثر من ٥٠ عينة التحليل البحيات التكتونية أو الحركات التكتونية أو كلاهما معا. تم فحص خمسة وسبعين موقعًا ، مع جمع أكثر من ٥٠ عينة التحليل البحوليات التكتونية أو البيولوجي القديم و تم استخدام جهاز OGPS لعدد ١٤٣ موقعاً لقياس الارتفاعات عن سطح مياه البحر .

INTRODUCTION

The field survey took place between 28 November and 7 December 2014, with the time in the field divided between the surveys in the Farasan Islands and in the coastal mainland in the provinces of Jizan and Asir. The principal aim of the survey was to locate, measure, and date the ages of the cemented coral reef terraces, which are now elevated above the modern sea level (Fig. 1). It was also intended to document the structural geologic features of these areas, such as the faults and the fractures that are associated with the terraces. The resulting data should provide a better framework for modelling the relative sea-level changes and the crustal movements during the Late Pleistocene. An improved geochronological framework is also relevant to the understanding and interpretation of the many Stone Age archaeological sites that were discovered in these regions. The interpretation of the data presented in this report and its significance for a better understanding of the tectonic and the sea-level changes is presented in Inglis and others (2019a).

ARCHAEOLOGICAL RELEVANCE

The archaeological potential of the Farasan Islands and Jizan-Asir coastal mainland was first documented in the 1970s and 1980s by the Comprehensive Archaeological Survey Programme (CASP) (Zarins and others, 1981). The areas visited during the fieldwork had been intensively surveyed by the DISPERSE Project since 2011, a joint Saudi-UK initiative with the Saudi Commission for Tourism and Antiquities (SCTA), now known as the Saudi Commission for Tourism and National Heritage (SCTNH), and the Department of Archaeology of the King Saud University, with a focus on prehistoric archaeology, coastal geomorphology, and submerged landscapes (Alsharekh and Bailey, 2013; Bailey, 2015; Bailey and Alsharekh, 2018; Bailey and others 2007, 2015, 2019; Geraga and others, 2019; Hausmann and others, 2019; Inglis and others, 2013, 2014a, 2014b, 2019b; Kübler and others, 2019; Momber and others, 2019; Sakellariou and others, 2019; Sanderson and Kinnaird, 2019; Sinclair and others, 2019). The time span of human occupation in this region is at least 500,000 years. An improved understanding of these geological changes over this period, especially those associated with sea level changes and tectonic movements are, therefore, of great archaeological interest (see also Bosworth and others, 2019; Lambeck and others, 2011).

The geological changes in the region are likely to have major impacts on the preservation and the visibility of the archaeological evidence and on the varying attractiveness of the different areas of prehistoric human activities. Coastal uplift or subsidence and sea-level changes have also had major impacts on the visibility and preservation of coastal archaeological sites.

Figure 1. Multiple Late Pleistocene coral terraces in the Sulayn island group of the Farasan archipelago.

On the Jizan-Asir mainland, there are concentrations of Stone Age archaeological sites of all periods, many of them in the coastal areas that are in close proximity to elevated coral reefs, associated with periods of higher sea levels, especially along the edge of the Harrat Al Birk. Most of these sites are areas with surface scatters of stone artefacts, and these can only be dated in broad terms by their technological characteristics. Some artefacts were found in stratigraphic position within a wadi cobble unit in the Dhahaban quarry in association with the elevated coral and beach deposits and the basaltic lava flows (Inglis and others, 2014). This was a particular target of the present survey.

In the Farasan Islands, there are over 3,000 prehistoric shell middens, including an impressive series of shell mounds of up to 5 m tall (Fig. 2). These sites are the result of the collection of marine molluscs for food and the discard of the shells on favored locations used as camping sites. An excavation shows that these shell deposits include numerous other marks of human activities, including the presence of fish bones, mammal bones, such as those of the gazelle, numerous ashy lenses, representing the remains of fireplaces, and other artefacts. Usually, these deposits had built up as a result of the repeated use of the same location over long periods, ranging from decades to centuries. Majority of these

sites, especially the mounds, fall in the period between 6,500 and 4,500 radiocarbon years BP (Bailey and others, 2013; Hausmann and others, 2019). There are also small middens and scatters of shells of more recent ages. The mounded sites are mostly located on the edge of a fossilized coral platform, which is the dominant landform of the Farasan Islands, and has been undercut by marine erosion at or close to the modern shoreline to form a characteristic notch. Some of these shorelines, especially those on which the larger mounds are located, appear to be higher than the present sea level. In some areas, these shorelines are now at some distance inland from the present-day shoreline around the edge of large bays that are now dry and sand-filled areas as a result of ongoing sedimentation and/or tectonic uplift.

TECTONIC RELEVANCE

The Saudi Geological Survey began a field program to study the uplifted Late Pleistocene coral terraces in December 2013. The purpose of this project is to document the relative sea-level changes along the coastlines of the country and, from this, to infer the magnitudes of the recent tectonic uplift or subsidence that occurred in the area. It is also intended to document the Late Pleistocene paleo-environments and the distribution of reefs through time. The first phase of

Figure 2. Series of shell mounds in the Janaba Bay, Farasan Kabir, showing a large mound in the foreground with the GPS measuring equipment used in the survey. Similar shell mounds are visible in the middle distance along the edge of a palaeoshoreline that is now ~1 km inland from the modern shoreline (visible on the far left).

this project covered the Saudi Arabian coast of the Gulf of Aqaba (Angeletti and others, 2019; Bosworth and others, 2019; Taviani and others, 2019), and the second phase reported here shifted the focus to the coast of the Red Sea.

The Late Pleistocene coral terraces in the southern Gulf of Suez in Egypt are known to have been tectonically uplifted by as much as 10–15 m during the past 125,000 years. This is almost entirely due to footwall uplift along several active extensional faults, at least one of which has been teleseismically active within the past 50 years (Bosworth and others, 2019). Our fieldwork with the SGS had confirmed that similar uplift rates are occurring in the northern Gulf of Aqaba at the Saudi margin. Along the southern part of the margin, particularly in the Midyan area, the rates are much lower.

The 2014 fieldwork reported here was intended to extend the documentation of the Late Pleistocene coral terrace to the southern part of the Red Sea margin, focusing on the area of Harrat Al Birk. This will provide important constraints on the tectonic evolution of the margin, which, unlike the Gulf of Aqaba, appears to be relatively stable or slightly subsident during the Late Pleistocene. Our fieldwork also included the offshore area of the Farasan archipelago, where the Pleistocene stratigraphy shows several overlying active salt domes, providing a different perspective on the neotectonics of the Red Sea basin. Though the situation here is much more complex than that of the coastal region.

OBJECTIVES OF THE SURVEY

The specific objectives of the survey were as follows:

- a. to study the structural geology of the coastal landforms and the associated evidence of faulting, fracturing, and volcanism
- b. to locate raised beaches that represent earlier periods of high sea level. Typically, these are composed of cemented corals or beach rock (cemented sands and shells)
- c. to measure the elevations of these old beach terraces in order to track the local and the regional changes in the Earth's crust that resulted from rifting and salt tectonics and to collect new data on sea-level changes
- d. to collect samples of corals or shells that are suitable for U-series dating from these elevated terraces
- e. to collect samples of basalts that are suitable for ${\rm Ar}^{40}/{\rm Ar}^{39}$ dating, wherever the ages of the basalts

could help constrain the geologic evolution of the coral terraces themselves

f. to relate the geologic history of these coastal areas to the archaeological sites, which are frequently found at the coastal edges with the elevated coral terraces

METHODS

The fieldwork targeted a number of locations known from previous work to have good exposures of Pleistocene coral reefs. Locations visited were traversed by 4-wheel drive vehicles and on foot. Within the Farasan archipelago a small motorboat was also used to access the coastlines of several islands.

Particular attention was devoted to the collection of samples of corals and shells, which were embedded in the cemented coral or beach deposits for the U-series dating (Fig. 3). The degraded nature of the coral materials necessitated an intensive search for the suitable in-situ specimens. Moreover, the heavily cemented nature of the deposits required heavy-duty hammers and chisels and prolonged effort to remove the samples from their matrix.

Most of the corals are unsuitable for dating because of their fibrous open structures and diagenetic alteration. Many coral samples, when broken open, showed streaks of mineral staining, a sign of probable contamination. The most suitable materials for dating are the large coral heads with dense and uniform structures.

The shells of the Tridacna clam were also collected (Fig. 4). This is a very large mollusc, often 20 cm or more in length, and with a thick, dense shell several centimeters thick, with a better chance of preserving a closed geochemical system protected from contamination. Other types of shells, principally gastropods, were collected in some cases, being the only dateable materials that are present in the deposits. The shell materials of this type, as well as the coral, are also amenable to Amino Acid Racemization (AAR) dating, and the University of York BioArCh Laboratory, a leading center for this dating method, has established protocols in obtaining reliable dates from shells and corals, and sometimes, on materials, where the U-series dating has failed (Penkman and others, 2008, Hendy and others, 2012). The likelihood of success depends on the particular amino acids that are present in the shell or the coral matrix and their racemization rates, something that can only be established through experimentation, so that results are not guaranteed, even in unaltered samples.

Coral reef structure of the Farasan Islands

Figure 3. Sampling a Pleistocene coral terrace on Farasan Kabir west of Mursa al Hesen. Both corals and *Tridacna* clam shells (shown here) were sampled. Note the staff with a GPS receiver, mounted the sample, used for both precision measurement of position and elevation.

Figure 4. The Tridacna clam and the labelled bag.

Coral reef structure of the Farasan Islands

Figure 5. Locations of the stations on the Farasan archipelago and along the Red Sea coastline at Harrat Al Birk. The digital elevation model used is from the US National Oceanic and Atmospheric Administration.

All of the samples for dating were separately bagged in canvas bags. Each sample was labelled with a unique catalogue number, prefixed with FA for Farasan or HAB for Harrat Al Birk, tagged with the dates of collection, and other relevant details (Fig. 4).

Over 70 samples for age dating were collected this way. All sample locations and elevations were measured with a Trimble differential GPS instrument, utilizing survey reference points or local base stations. Postacquisition data processing was conducted by the survey team at the SGS. Additional traverses and spot elevations of specific features were made with the same equipment. In some locations, additional elevation data were also obtained by tape measure, referenced to the sea level. The locations of the outcrop stations are shown in Figure 5. The full details of the samples for age dating and the DGPS measurements are tabulated in Appendices 1 and 2. A map of the DGPS positions in Farasan Station 3 is presented in Appendix 3.

In some locations, archaeological artefacts were identified, such as the flaked stone artefacts or the

broken ceramics. The shell middens, usually more or less extensive scatters of shells left by humans, were also identified in some of the areas visited, including those sites that were not recorded in previous surveys. These were described in the field with brief notes on their extent, principal mollusc species, and the presence or absence of artefacts. Several artificial stone structures were also encountered in some areas, and were briefly measured and described, including an important series of stone mounds in the southern area of Al Qamah in the Harrat Al Birk, which are clearly human burial mounds but of unknown age (Fig. 6). We also observed a group of interesting structures, one of which is associated with a midden of pearl-oysters (Fig. 7) on one of the Abalat islands. All archaeological data will be submitted to the SCTA for their records, so that these sites, which are at risk of being damaged or destroyed, will be flagged for their attention and needed action to preserve them.

In the coastal region of Asir and Jizan Provinces, all archaeological materials are at risk because of the intensive development taking place in these areas, with extensive earth moving, bulldozing, and construction

Figure 6. A stone mound south of Al Qamah in the Harrat Al Birk, resting on a Pleistocene terrace, which is now located several kilometers from the present shoreline. More than a dozen of these mounds are present in this location and were built for human burials.

Figure 7. Shell midden located on one of the Abalat islands within the Farasan archipelago. The shells are predominantly pearl oysters and are associated with the remains of a nearby stone structure. This site probably represents a pearl fishermen's camp of relatively recent age.

activities. We have, therefore, collected the materials in areas, where the likelihood of their loss or destruction is high. These materials comprise a small number of artefacts, including mostly individual flaked stone artefacts but also some ceramic materials. These materials were bagged separately and will be added to the materials collected previously by the DISPERSE project staff, which are currently stored in the SCTA storage in the Sabiya Museum (Jizan).

PRELIMINARY RESULTS

FARASAN ISLANDS

On the Farasan Islands, we spent three days of intensive survey and targeted three principal areas during the successive days: 1) Mursa Al Hesen in the north of Farasan Kabir, the largest island of the Farasan group, and also, the area that shows most obvious signs of tectonic uplift associated with salt tectonics on the satellite images; 2) the Sulayn and Abalat group of islands, north of the main port on Farasan Kabir; and 3) Ras Shida at the southern extremity of Farasan Kabir. A plan to visit the island of Qumah was aborted because of bad weather and a halt to all boating activities on this particular day.

MURSA AL HESEN

This is a fisherman's harbor in a small bay (Fig. 8), backed by a partly eroded cliff, forming an impressive

sequence of uplifted white biogenic/bioclastic marine sediments and capped by a 2-m thick coral reef terrace. The top of the terrace is about 30 m high. The terrace is bounded by a NW-SE striking extensional fault on its southwest side. Numerous coral and *Tridacna* samples were collected from the lower lying terraces to the west of the harbor.

SULAYN AND ABALAT ISLANDS

We visited a number of islands to the north of the modern port of Farasan and collected samples from Murrabaah Island within the main Sulayn group (Fig. 9), and from one of the larger islands of the Abalat group to the northwest (Fig. 10). The upper coral terrace in Abalat lies at an elevation of 9 m, as determined using a tape measure to the sea level in the afternoon of November 30.

RAS SHIDA

Ras Shida itself shows an interesting four-fold sequences of uplifted coral platforms. The highest and oldest is Jabal Shida, with an elevation of 26 m (DGPS measurement in December 1 at 11:44 AM) (Fig. 11).

Below this highest terrace is a terrace, now tilted and with sinkholes, most probably formed by wave action acting on the minor faults or joint fractures in the bedrock, before the surface was uplifted (Fig. 12).

Figure 8. A fishing village in Mursa al Hesen on Farasan Kabir. This photograph was taken from the top of a coral terrace that was up-thrown relative to the plain below, with a topographic offset of about 30 m.

Figure 9. Coral terraces and small fishing village in the Murrabaah Island.

Figure 10. Massive coral reef section, capped by 9-m terrace in the large island within the Abalat group.

Figure 11. The highest coral terrace in Ras Shida.

Figure 12. Upper terrace in Ras Shida, showing a sinkhole and a surface joint fracture.

Skirting this is a lower terrace, and below this is a 3-m terrace that abuts the present shoreline. The three upper units provided samples for age dating. However, we were unable to find suitable dateable materials in the 3-m terrace around the headland, because the reef materials here, as elsewhere along the Janaba Bay shoreline, are mostly composed of beachrock rather than corals. Some of the shell mounds sitting on the

edge of this coral terrace yielded radiocarbon age dates in the range of 6,000–4,000 cal BP, but this can only be interpreted as a minimum age for the underlying terrace, which could be very much older. The preliminary height measurements suggest that this lower terrace has variable elevations along its length, suggesting the effect of a differential uplift/subsidence along this stretch of the coast (Figs. 13 and 14).

Figure 13. Shell mound of mid-Holocene, age sitting on the 3-m terrace, with the Ras Shida headland visible from a far distance. The edge of the coral terrace was undercut by marine erosion.

Figure 14. The Farasan 3-m coral terrace, showing the degree of undercutting by marine erosion.

JIZAN MAINLAND

We spent four days on the mainland, concentrating on the localities along the coastal edge of the Harrat Al Birk (Fig. 5) within the Province of Asir: 1) the Dhahaban quarry, 2) the Al Birk area to the north, and 3) the Al Qamah area to the south.

DHAHABAN QUARRY

The Dhahaban Quarry is a complex series of deposits, partially exposed by quarrying and by the down-cutting of a wadi that grades to the present sea level, which has incised the earlier deposits. The deposits represent at least four different episodes: 1) a volcanic cinder cone with associated basaltic lava flows; 2) a unit comprising large water-rolled cobbles of basaltic lava and isolated corals and marine shells; 3) a marine deposit of cemented sands, beach rocks, and corals, which formed during a period, when the sea level was ~8 m higher than the present level; and 4) an upper cross-bedded deposit, believed to be wind blown that is banked up against the volcanic cinder cone. This site is also archaeologically significant, since it has yielded a large number of Early and Middle Stone Age artefacts lying on the surface of the marine terrace, and a smaller number of artefacts embedded in unit (2) (Inglis and others, 2014a,b) (Fig. 15 and 16).

Samples for new age dating were obtained from all four units, including the basalts, for Ar⁴⁰/Ar³⁹ dating of the basaltic lavas to derive a maximum date for the overlying deposits. The samples for OSL dating were recovered from the upper sand unit in 2014 and are currently being processed at the Scottish Universities Environmental Research Centre, UK. The combination of the dating methods and the dating samples from this site offers a good prospect of unravelling its geologic history.

AL BIRK REGION

A number of localities were visited in the Al Birk region. These include the shell midden site to the north of Al Birk town, which were visited and sampled during the previous archaeological surveys (Fig. 17). The site is of particular interest, because it comprises a cemented coral terrace, most likely of last interglacial date, that is situated immediately behind the modern beach with Middle Stone Age artefacts on its surface and probably of similar age (Inglis and others, 2014b), and a scatter of food shells that were dated to be 5,560±70 BP (Beta-191460) using radiocarbon, which was an age obtained from one of the shells (Bailey and others, 2007; Alsharekh and Bailey 2013). In other words, the area is an archaeological palimpsest, comprising a mixture of materials of very different ages that cannot

Figure 15. Unit 2, comprising a debris flow conglomerate within the wadi, cutting through the Dhahaban quarry. The clasts include cobbles of both the basalt and the Pleistocene corals that crop out in other parts of the quarry. Stone artefacts were also recovered from this same deposit (see Fig. 16).

be stratigraphically disentangled. The coral terrace on which the deposit sits yielded a radiocarbon age of 38,380 1290 BP (Beta-191459), in effect, an infinite age. New samples for the age dating of corals and shell were obtained from the eroded section of the cemented coral unit. Two other locations in the northern area of Al Birk town were sampled, one with a cemented coral deposit banked up against a volcanic lava flow on the west of the main road opposite a gas station, and a second locality in the eastern side of the main road and further south, where a coral beachrock deposit is exposed, with a single

Figure 16. The debris flow in the Dhahaban quarry, showing two basalt artefacts embedded in the deposit (immediately to the right of the measuring scale).

Figure 17. The shell midden at Al Birk. The midden comprises a relatively thin and superficial deposit, spread over quite a large area. The stone tools that were scattered across the surface are made from the local basalt and belong to a much earlier period than the shells. Large boulders of basalt are clearly visible around the edge of the area as can be seen in this image.

Figure 18. Extensive coral terrace that was banked up against a volcanic cinder cone on the east side of the coast guard radar station south of Al Birk. The corals in this location are very highly altered and generally unsuitable for U-series age dating.

struck basalt flake recovered from within the beachrock deposit.

In the town of Al Birk itself, there is a prominent peninsula projecting out to sea, comprising a lava flow. Coral deposits occur on its flank but the best exposures are inaccessible behind a tall security fence.

Several other localities were visited and sampled south of Al Birk town, including exposures of an old coral terrace in the inner edge of the modern sabkha, and the radar station site, the CASP site 216-208, also known as DISPERSE Locality L0084 (Zarins and others, 1981), comprising a volcanic cinder cone with a coral terrace on its northern and eastern flanks (Fig. 18). This site is well known in published archaeological literature and has been visited on several occasions, yielding Early and Middle Stone Age artefacts and a K/Ar age of 1.3 Ma, based on the materials from the cinder cone (Bailey and others, 2007). Boulders engraved with writing in South Arabic scripts are also present on the eastern slope of the cinder cone immediately below the radar station and in the nearby shallow tunnels that were excavated into the side of the cinder cone within a defined area of the SCTA protection (Fig. 19).

Since this site was first visited in the 1980s and again in 2004 and 2013, the whole area has been seriously disturbed by construction works, road building, and extensive quarrying of sediments. The coral terrace on the eastern side of the cinder cone is still reasonably intact, but finding samples of corals that are suitable for dating proved elusive, and only shell samples were recovered from this location.

AL QAMAH

In the southern area of Al Qamah, we visited a lava flow and a coral beachrock complex, similar to the other exposures in this region. This location is of archaeological interest because of the number of stonebuilt burial mounds that are located on the edge of the terrace (Fig. 6) and a nearby scatter of archaeological materials, including incised ceramics. The top of the terrace was surveyed.

CONCLUSIONS

This report presents data of coastal landforms, principally elevated coral terraces and exposures of beachrock, and associated archaeological evidence in the form of shell middens and stone artefacts. The approximate age date of the materials is at least 130,000 kyr or may be more. The geological features were formed at or close to their contemporaneous sea-level, and their present elevations are evidence either of sea level changes or vertical tectonic movements since the time of their formation, or a combination of both. They, therefore, provide important indicators of these processes during the late Quaternary period.

Coral reef structure of the Farasan Islands

Figure 19. Boulders with south Arabic scripts were found on the eastern slope of the cinder cone.

The archaeological data provide insights into the potential significance of coastal environments and marine resources to the Stone Age populations that lived in the region over the same time range. The data were collected from 13 locations along the 100 km coastline adjacent to the volcanic province of the Harrat Al Birk in the provinces of Asir and Jizan, and from three areas in the Farasan Islands: the north of Farasan al Kabir, the headland of Ras Sheida in the south of Farasan al Kabir, and the Sulayn and Abalat group of islands. All locations and features were photographed, and their positions and elevations were measured with DGPS equipment. Over 70 samples for dating were collected for Uranium series, Argon-Argon and Amino Acid Racemization analysis. The data on the archaeological features or artefacts were recorded in situ. The Al Birk coastal features lie in the range of 3-8 m above the modern sea level, which is consistent with the elevation of the features, dated elsewhere in the Red Sea region, to the last interglacial high sea-level stand at c. 130,000 ka. The features of the Farasan Island have much more variable elevations due to the locally variable effects of salt doming. The archaeological features mostly comprise shell middens that are known to be of mid-Holocene age based on radiocarbon determinations. These cannot be used to date the underlying coral terraces or other geological formations, which may precede the middens by an

unknown time interval. In rare cases, notably at the Dhahaban quarry site in the Al Birk region, stone artefacts are stratified in deposits that were linked to an elevated coral terrace.

RECOMMENDATION

Additional data might be required to date the samples, and as such, future trips are recommended, so that a full geochronological interpretation could be determined.

ACKNOWLEDGMENTS

We thank the former President of the Saudi Geological Survey, Dr. Zohair A. Nawab, and the former Assistant Vice President, Dr. Abdullah M. Alattas, for their support. Mustafa Khorsheed, Adel Jerais, Salem Al Nomani, Thamer Bakarman, and Fahad Al Rashidi are thanked for providing the much-needed help in the field. We would also like to extend our thanks to the Center for Marine Geology (CMG) for organizing the field trip. Special thanks to Abdulnasser Qutub for managing the logistical support. Mr. Saleh Sefry, the President, is thanked for his encouragement and permission to publish this technical report. Bailey and Inglis would like to thank Prince Sultan bin Salman bin Abdul Aziz, formerly the President of the Saudi Commission for Tourism and National Heritage, and his staff for their support on the research on coastal archaeology of the region and the European Research Council (ERC) under the Ideas Programme of the 7th Framework Programme as Advanced Grant 269586, DISPERSE: Dynamic Landscapes, Coastal Environments and Human Dispersals, for the additional funding. Inglis also acknowledges the support from the European Union's Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie Grant Agreement 660343, SURFACE: Human Landscape Interactions and Global Dispersals: The Surface Record of Palaeolithic Arabia. This is DISPERSE contribution number 61.

REFERENCES

- Alsharekh, A.M., Bailey, G.N. (eds.), 2013. Coastal prehistory in southwest Arabia and the Farasan Islands: 2004–2009 field investigations: Saudi Commission for Tourism and Antiquities, Riyadh.
- Angeletti, L., Rasul, N.M.A., and Taviani, M., 2019, Mollusc fauna associated with Late Pleistocene coral reefs of the Saudi Arabian side of the Gulf of Aqaba: *in*: Rasul, N.M.A., and Stewart I.C.F. (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 367–387.
- Bailey, G.N., 2015, The evolution of the Red Sea as a human habitat during the Quaternary period: *in*: Rasul, N. M. A., and Stewart, I. C. F. (eds.), The Red Sea: The formation, morphology, oceanography, and environment of a young ocean basin: Springer Verlag, Heidelberg, p. 595–610.
- Bailey, G.N., and Alsharekh, A.M., (eds.), 2018, Palaeolithic archaeology, coastal prehistory, and submerged landscapes in southwest Saudi Arabia and the Farasan Islands: DISPERSE Field Reports, 2012–2015, Saudi Commission for Tourism and National Heritage, Riyadh.
- Bailey, G.N., Williams, M.G.M., and Alsharekh, A., 2013. Shell mounds of the Farasan Islands, Saudi Arabia: *in*: Bailey, G., Hardy, K., Camara, A. (eds.) Shell Energy: Mollusc Shells as Coastal Resources. OxBow, Oxford, p. 241–54.
- Bailey, G.N., Alsharekh, A., Flemming, N., Lambeck, K., Momber, G., Sinclair, A., and Vita-Finzi, C. 2007, Coastal prehistory in the southern Red Sea Basin: Underwater archaeology and the Farasan Islands: Proceedings of the Seminar for Arabian Studies, v. 37, p. 1–16.

- Bailey, G.N., Devès, M.H., Inglis, R.H., Meredith-Williams, M. G., Momber, G., Sakellariou, D., Sinclair, A. G. M., Rousakis, G., Al Ghamdi, S., and Alsharekh, A.M., 2015, Blue Arabia: Palaeolithic and underwater survey in SW Saudi Arabia and the role of coasts in Pleistocene Dispersal: Quaternary International, v. 382, p. 42–57.
- Bailey, G.N., Meredith-Williams, M., Alsharekh, A., and Hausmann, N., 2019, The archaeology of Pleistocene coastal environments and human dispersal in the Red Sea: Insights from the Farasan Islands: *in*: Rasul, N. M. A., and Stewart, I. C. F. (eds.), Geological setting, palaeoenvironment, and Archaeology of the Red Sea: Springer, Cham, p. 587–608.
- Bosworth, W., Taviani, M., and Rasul, N.M.A., 2019, Neotectonics of the Red Sea, Gulf of Suez, and Gulf of Aqaba: *in*: Rasul, N. M. A., and Stewart, I. C. F. (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 11–35.
- Geraga, M., Sergiou, S., Sakellariou, D, and Rohling E., 2019. Results of micropalaeontological analyses on sediment core FA09 from the southern Red Sea continental shelf: *in*: Rasul, N. M. A., and Stewart I.C.F., (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 709-723.
- Hausmann, N., Kokkinaki, O., and Leng, M. J., 2019, Red Sea palaeoclimate: Stable isotope and elementratio analysis of marine mollusc shells: *in*: Rasul, N. M. A., and Stewart I. C. F., (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 725–740.
- Hausmann, N., Meredith-Williams, M., Douka, K., Inglis, R., and Bailey, G., 2019. Quantifying spatial variability in shell midden formation in the Farasan Islands, Saudi Arabia. *PLoS ONE* 14(6): e0217596. https://doi.org/10.1371/journal.pone.0217596.
- Hendy, E., Tomiak, P., Collins, M.J., Hellstrom, J., Tudhope, A., Lough, J., and Penkman, K.E.H., 2012, Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications: Geochimica et Cosmochimica Acta, v. 86, p. 338–353.
- Inglis, R.H., Sinclair, A.G.M., Shuttleworth, A., Alsharekh, A.M., and Al Ghamdi, S., 2013, Preliminary Report on 2013 fieldwork in southwest Saudi Arabia by the DISPERSE Project: (2) Jizan and Asir Provinces, February–March 2013:

Unpublished Report to the Saudi Commission for Tourism and Antiquities. http://www.disperse-project.org/field-reports.

- Inglis, R.H., Sinclair, A.G.M., Shuttleworth, A., Al Maamary, A., Budd, W., Hausmann, N., Meredith-Williams, M. G., Alsharekh, A. M., Al Ghamdi, S., and Bailey, G. N., 2014a, Preliminary report on 2014 fieldwork in southwest Saudi Srabia by the DISPERSE Project: (1) Jizan and Asir Provinces: Unpublished Report to the Saudi Commission for Tourism and Antiquities. http://www.disperseproject.org/field-reports.
- Inglis, R.H., Sinclair, A., Shuttleworth, A., Alsharekh, A., Al Ghamdi, S., Devès, M., Meredith-Williams M.G., and Bailey. G.N., 2014b, Investigating the Palaeolithic landscapes and archaeology of the Jizan and Asir Regions, southwest Saudi Arabia: Proceedings of the Seminar for Arabian Studies, v. 44, p. 193–212.
- Inglis, R., Bosworth, W., Rasul, N.M.A., Al Saeedi, A., and Bailey, G.N., 2019a, Investigating the fossil coral terraces and coastal archaeology of the southern Red Sea: *in* Rasul, N. M. A., and Stewart I.C.F. (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 553–581.
- Inglis, R.H., Fanning, T. C., Stone, A., Barfod, D.N., Sinclair, A., Chang, H.S., Alsharekh, A., and Bailey, G., 2019b, Paleolithic artifact deposits at Wadi Dabsa, Saudi Arabia: A multiscalar geoarchaeological approach to building an interpretative framework: Geoarchaeology: An International Journal, v. 34, p. 272–294.
- Kübler, S., King, G.C.P., Devès, M.H., Inglis, R.H., and Bailey, G.N., 2019, Tectonic geomorphology and soil edaphics as controls on animal migrations and human dispersal patterns: *in*: Rasul, N.M.A., and Stewart, I.C. F. (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 653–673.
- Lambeck, K., Purcell, A., Flemming, N., Vita-Finzi, C., Alsharekh, A., and Bailey, G.N., 2011, Sea level and shoreline reconstructions for the Red Sea: Isostatic and tectonic considerations and implications for hominin migration out of Africa: Quaternary Science Reviews, v. 30, no. 25–26, p. 3,542–3,574.
- Momber, G., Sakellariou, D., Rousakis, G., and Bailey, G.N., 2019, The multi-disciplinary search for underwater archaeology in the southern Red Sea: *in*: Rasul, N.M.A., and Stewart, I.C. F. (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 609–632.

- Penkman, K.E.H., Kaufman, D.S., Maddy, D., and Collins, M.J., 2008, Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells: Quaternary Geochronology, v. 3, no. 1–2, p. 2–25. 10.1016/j.quageo.2007.07.001
- Sakellariou, D., Rousakis, G., Panagiotopoulos, I., and Bailey, G.N., 2019, Geological structure and geomorphological evolution of the Farasan Islands continental shelf, southern Red Sea, SW Saudi Arabia: *in*: Rasul, N.M.A., and Stewart, I.C.F. (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 633–656.
- Sanderson, D.C.W., and Kinnaird, T.C., 2019, Optically stimulated luminescence dating as a geochronological tool for late Quaternary sediments in the Red Sea region: *in*: Rasul, N.M.A., and Stewart, I.C.F. (eds.) Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 685–707.
- Sinclair, A., Inglis, R., Shuttleworth, A., Foulds, F., and Alsharekh, A., 2019, Landscape archaeology, palaeolithic survey and coastal change along the southern Red Sea of Saudi Arabia: *in*: Rasul, N.M.A., and Stewart, I.C.F. (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 533–552.
- Taviani, M., Montagna, P., Rasul, N.M.A., Angeletti, L., and Bosworth, W., 2019, Pleistocene coral reefs on the Saudi Arabian side of the Gulf of Aqaba, Red Sea: *in*: Rasul, N.M.A., and Stewart, I.C.F. (eds.), Geological setting, palaeoenvironment, and archaeology of the Red Sea: Springer, Cham, p. 341–365.
- Zarins, J., Al-Jawad Murad, A., and Al-Yish, K.S., 1981, The comprehensive archaeological survey program, a. The second preliminary report on the southwestern province: Atlal, the Journal of Saudi Arabian Archaeology, v 5, p. 9–42.

Coral reef structure of the Farasan Islands

APPENDICES

Location 1	Code	Vec Vec	eries	Date	Information on the Bag	Additional Comments
Farasan Islands series		3	2			
Mursa al Hesen, 1st stop	FA0001	≻		29/11/2014	Sample for age dating	Bill Bosworth's notes
Mursa al Hesen, 1st stop	FA0002	≻		29/11/2014		Bill Bosworth's notes
Mursa al Hesen, 1st stop	FA0003	≻		29/11/2014	Coral for age dating	Bill Bosworth's notes
Mursa al Hesen, 2nd stop	FA0004		z	29/11/2014	Sample missing	Large Tridacna collected by Geoff
Mursa al Hesen, 2nd stop	FA0005		z	29/11/2014	Sample missing	Spondylus shell collected by Geoff
Mursa al Hesen, 2nd stop	FA0006	≻		29/11/2014		Another clam
Mursa al Hesen, 2nd stop	FA0007		z	29/11/2014	Dec	Adel's clam
Mursa al Hesen, 2nd stop	FA0008		z	29/11/2014	Sample for palaeoecology	Not a sample for dating
Mursa al Hesen, 2nd stop	FA0009	≻		29/11/2014		Najeeb's fan-shaped coral
Mursa al Hesen, 2nd stop	FA0010		z	29/11/2014		Shell for palaeoecology
Murrabaah Island	FA0011		z	30/11/2014	No samples collected	Record of shell midden
Murrabaah Island	FA0012		z	30/11/2014	Palaeoecology terrace surface	
Murrabaah Island	FA0013	≻		30/11/2014		From the tallest section on the island
Murrabaah Island	FA0014	~		30/11/2014		From dropped cliff - Robyn and Geoff
Murrabaah Island	FA0015	≻		30/11/2014	Coral for age dating, on small island	Bag contains FA0015a and FA0015c
Murrabaah Island	FA0015a	≻		30/11/2014	80 cm below 15	Must be below 15c
Murrabaah Island	FA0015c	≻		30/11/2014	Tridacna	All FA0015 from the other side of the dropped cliff
Abalat Islands	FA0016	≻		30/11/2014	Sample for dating	Coral
Abalat Islands	FA0017		z	30/11/2014	Palaeoecology	Not for age dating
Ras Shida	FA0018	≻		01/12/2014	Bill and Najeeb samples	Highest terrace; Bill Bosworth's notes
Ras Shida	FA0019	≻		01/12/2014	Bill and Najeeb samples	Highest terrace; Bill Bosworth's notes
Ras Shida	FA0020	≻		01/12/2014	Geoff and Bill sample	Highest terrace; Bill Bosworth's notes
Ras Shida	FA0021	≻		01/12/2014	Sample for the SGS	Upper terrace, with sinkholes; NB 2 bags with the same number
Ras Shida	FA0021	≻		01/12/2014	Coral for age dating	Upper terrace, with sinkholes; NB 2 bags with the same number
Ras Shida	FA0022	≻		01/12/2014	Tridacna (bag, 1 Nov) [sic]	Lower terrace
Ras Shida	FA0023A	≻		01/12/2014	Coral for age dating	Lower terrace
Ras Shida	FA0023B	≻		01/12/2014	Tridacna	Lower terrace
Janaba Bay East	FA0024	≻		01/12/2014	Tridacna	Lowest terrace in the Janaba Bay, NW of Ras Shida
Janaba Bay North	FA0025	≻		01/12/2014	Coral	Lowest terrace surface near the power station and Janaba 4 shell mound
Harrat Al Birk series						
Dhahaban Quarry	HAB0001		z	03/12/2014	Vesicular basalt	Basalt block in the plastic bag (Bill)
Dhahaban Quarry	HAB0002		z	03/12/2014	Robyn sediments	Cross-bedded unit from the 'aeolianite' section

Appendix 1: Dating Samples

		00				
Location 1	Code	Yes	No	Date	Information on the Bag	Additional Comments
Dhahaban Quarry	HAB0003		z	03/12/2014	Robyn sediments	Pebble unit from the 'aeolianite' section
Dhahaban Quarry	HAB0004		z	03/12/2014	Robyn sediments	Cross-bedded unit from the 'aeolianite' section
Dhahaban Quarry	HAB0005		z	03/12/2014	Robyn sediments	Unconsolidated unit below the cross-bedded unit, 'aeolianite' section
Dhahaban Quarry	HAB0006		z	03/12/2014	Robyn sediments	Modern dune surface
Dhahaban Quarry	HAB0007		z	03/12/2014	Basalt in calc. sandstone	Basalt cobbles from below/within the aeolianite unit
Dhahaban Quarry	HAB0008		z	03/12/2014	Vesicular basalt, base volcano	Basalt from the base of volcanic Jebel
Dhahaban Quarry	HAB0009		z	03/12/2014	No sample	Top of sst/aeolianite
Dhahaban Quarry	HAB0010	≻		03/12/2014	Coral, top of the flow	Large flake removed from the section
Dhahaban Quarry	HAB0011		z	03/12/2014	No sample	Spot height, no sample collected
Dhahaban Quarry	HAB0012	≻		03/12/2014	Large coral head	From the debris flow
Dhahaban Quarry	HAB0013	≻		03/12/2014	Small coral head	From the debris flow
Dhahaban Quarry	HAB0014	≻		03/12/2014	Large oyster shell	Base of the debris flow
Dhahaban Quarry	HAB0015	≻		03/12/2014	Coral	Coral in the section below the HAB0011 flake
Dhahaban Quarry	HAB0016	≻		03/12/2014	Coral	Coral in the section below HAB0015
Dhahaban Quarry	HAB0017		z	03/12/2014	Basalt, wadi bed	Basalt block in the plastic bag (Bill)
Dhahaban Quarry	HAB0018		z	03/12/2014	Cement, wadi base	Cement and pebbles from the wadi base
Dhahaban Quarry	HAB0019		z	03/12/2014	Basalt within the wadi flow (cobble)	
Dhahaban Quarry	HAB0020	≻		03/12/2014	Marine unit, bulldozer tracks	North side of the wadi and west, shells on the surface
Dhahaban Quarry	HAB0021		z	03/12/2014	Marine unit, top of the wadi section	North side of the wadi and west, shell
Dhahaban Quarry	HAB0022	≻		03/12/2014	Marine unit, top of the wadi section	West of HAB0021, shell
Dhahaban Quarry	HAB0023	≻		03/12/2014	Tridacna, shell unit surface	North side of the wadi and west, Tridacna embedded on the surface
Dhahaban Quarry	HAB0024	≻		03/12/2014	Tridacna	Similar location, loose on the surface
Dhahaban Quarry	HAB0025		z	03/12/2014	Surface coral	Coral in poor condition, not worth for age dating
Dhahaban Quarry	HAB0026	≻		03/12/2014	Coral from the terrace	In-situ brain coral from the area north of the small wadi
Dhahaban Quarry	HAB0027	≻		03/12/2014	Coral from the debris flow	No details in GB notes
Dhahaban Quarry	HAB0028	≻		03/12/2014	Coral cobble from the debris flow	No details in GB notes
Dhahaban Quarry	HAB0029		z	03/12/2014		No information
Dhahaban Quarry	HAB0030		Z	03/12/2014	Basalt from the peak	Basalt block in plastic bag (Bill)
Dhahaban Quarry	HAB0031		Ν	03/12/2014	Vesicular basalt from the Jebel notch	Basalt block in plastic bag (Bill)
Dhahaban Quarry	HAB0032		Ν	03/12/2014	Calc. for petrography, highest position	
Al Birk North shell midden	HAB0033	>		04/12/2014	Coral beneath the shell midden	
Al Birk North shell midden	HAB0034	~		04/12/2014	Shell scatter north of Al Birk	
Al Birk North shell midden	HAB0035	≻		04/12/2014	Shell scatter terrace north of Al Birk	

Saudi Geological Survey Technical Report - SGS-TR-2020-4 (Appendix-1)

Appendix 1: Dating Samples--CONTINUED

Appendix 1: Dating Samples	CONTINU	ED					
	, odo	U-Se	eries	4 2	and other and include	Additional Commonster	
FOCATION T	COUE	Yes	No	חמוב			
Al Birk North shell midden	HAB0036	٢		04/12/2014	Tridacna, Al Birk north, midden site		
Al Birk North shell midden	HAB0037		N	04/12/2014	Shells from the reef, Al Birk	Presumed to be a palaeoecology sample	
Al Birk North Gas Station	HAB0038	≻		04/12/2014	Coral for age dating		
Al Birk North, Gas Station	HAB0039	≻		04/12/2014	Tridacna	(broken) and bivalve + Tridacna (whole)	
Al Birk North, E of main road	HAB0040	≻		04/12/2014	Coral from the beachrock		
Al Birk North, E of main road	HAB0041		N	04/12/2014	Struck flake	Not a sample for age dating	
Al Birk headland	HAB0042		Ν	04/12/2014	Shell midden	Not a sample for age dating	
Al Birk South	HAB0043	۲		04/12/2014	Tridacna from the reef remnant	By the main road south of Al Birk	
Al Birk South	HAB0044A	۲		04/12/2014	1 of 2. Coral from large block (moved)	Massive coral next to track	
Al Birk South	HAB0044B	۲		04/12/2014	2 of 2	Same as above	
Al Qahma radar station	HAB0045A	≻		04/12/2014	Tridacna + Bivalve	Coral terrace E of volcanic cone	
Al Qahma radar station	HAB0045B	۲		05/12/2014	Tridacna + other shell	Coral terrace E of volcanic cone	
Al Qahma radar station	HAB0046	۲		05/12/2014	Tridacna	Coral terrace E of volcanic cone	
Al Qahma radar station	HAB0047		Ν	05/12/2014	Gastropod shell	Coral terrace E of volcanic cone	
Al Qahma South	HAB0048		Ν	06/12/2014	Pottery	Archaeological site near burial mounds	
Totals		47	32				

\sim
=
₹
\leq
\vdash
Z
0
Ō
Ī
Ś
<u> </u>
d
F
Ъ
ŝ
b٥
Ē
÷
σ
\Box
• :
×
Ξ
ž
ē
ā
-

Ľ.
5
<u> </u>
σ
S
6
a
ù.
2
Ś
<u>n</u>
G
2
~
.≏
σ
Ð
_
Q
dc
App

		ITM	Elevation					,			
Sample No.	East	North	(m)	Deg	Min	Sec	Deg	ЧIИ	Sec	Start Time	End Time
bas-1	808558.8040	1850349.6120	3.59	16	42	56.602660	41	53	36.415460	1	1
cos-1	808561.1970	1850335.2710	0.29	16	42	56.135430	41	53	36.489150	11/29/2014 01:20:11 PM	11/29/2014 01:20:18 PM
cos-2	808559.4900	1850333.4660	0.28	16	42	56.077570	41	53	36.430700	11/29/2014 01:20:34 PM	11/29/2014 01:20:36 PM
cos-3	808559.4900	1850333.4650	0.28	16	42	56.077560	41	53	36.430720	11/29/2014 01:21:00 PM	11/29/2014 01:21:02 PM
cos-4	808552.0220	1850340.1210	2.84	16	42	56.297390	41	53	36.182090	11/29/2014 01:23:16 PM	11/29/2014 01:23:18 PM
cos-5	808548.2790	1850346.0540	3.01	16	42	56.491990	41	53	36.058760	11/29/2014 01:24:18 PM	11/29/2014 01:24:20 PM
cos-6	808548.6890	1850345.1190	3.31	16	42	56.461430	41	53	36.072130	11/29/2014 01:24:54 PM	11/29/2014 01:24:56 PM
cos-7	808554.5280	1850329.1930	2.89	16	42	55.941040	41	53	36.261250	11/29/2014 01:26:33 PM	11/29/2014 01:26:35 PM
cos-8	808554.3240	1850329.7380	2.86	16	42	55.958860	41	53	36.254650	11/29/2014 01:27:00 PM	11/29/2014 01:27:02 PM
cos-9	808541.4450	1850348.7630	4.96	16	42	56.583260	41	53	35.829580	11/29/2014 01:32:43 PM	11/29/2014 01:32:45 PM
cos-10	808545.9210	1850340.4430	4.95	16	42	56.310730	41	53	35.976490	11/29/2014 01:33:11 PM	11/29/2014 01:33:13 PM
cos-11	808550.1210	1850330.5690	4.26	16	42	55.987850	41	53	36.113300	11/29/2014 01:33:35 PM	11/29/2014 01:33:37 PM
cos-12	808557.0450	1850321.5090	3.57	16	42	060069.33	41	53	36.342360	11/29/2014 01:34:01 PM	11/29/2014 01:34:03 PM
cos-13	808520.2840	1850403.7770	3.95	16	42	58.381310	41	53	35.142860	11/29/2014 01:37:13 PM	11/29/2014 01:37:15 PM
stm-7	808482.3850	1850409.5940	4.02	16	42	58.588300	41	53	33.867500	11/29/2014 01:43:24 PM	11/29/2014 01:43:26 PM
stm-8	808485.2980	1850410.9080	3.00	16	42	58.629620	41	53	33.966380	11/29/2014 01:44:13 PM	11/29/2014 01:44:15 PM

Appendix 2. GPS 2 Farasan St2--CONTINUED

			1	12/01/2014 09:20	12/01/2014 09:21	12/01/2014 09:21	12/01/2014 09:27	12/01/2014 09:25	12/01/2014 09:26	12/01/2014 09:26
	Start Lime			12/01/2014 09:20	12/01/2014 09:21	12/01/2014 09:21	12/01/2014 09:27	12/01/2014 09:25	12/01/2014 09:26	12/01/2014 09:26
	Sec	42.737180	42.737180	35.359440	35.103900	34.758020	42.675980	42.926560	43.219660	43.661700
. 41		9	9	9	9	9	9	9	9	9
	neg	42	42	42	42	42	42	42	42	42
	280	51.703330	51.703330	53.180930	52.733230	52.178860	51.640040	52.216110	52.425270	52.805530
. 41 i. i.		38	38	38	38	38	38	38	38	38
	neg	16	16	16	16	16	16	16	16	16
Elevation	(m)	5.45	5.45	-0.02	0.00	0.01	5.39	3.19	3.19	3.21
٢M	North	1842808.0020	1842808.0020	1842856.6180	1842842.9560	1842826.0510	1842806.0810	1842823.6940	1842830.0030	1842841.5100
5	East	191899.8480	191899.8480	191681.7260	191673.9490	191663.4460	191898.0050	191905.6920	191914.4760	191927.7540
	sample No.	base 1	BASE_1	s-lev-1	s-lev-2	s-lev-3	top-1	top-cor-1	top-cor-2	top-cor-3

Г

		TM	Flevation								
Sample No.	East	North	(m)	Deg	Min	Sec	Deg	Min	Sec	Start Time	End Time
base 1	188784.1730	1840961.6120	11.22	16	37	50.222600	42	4	58.601060	-	-
BASE_1	188784.1730	1840961.6120	11.22	16	37	50.222600	42	4	58.601060	1	-
cave	188691.8420	1840959.6340	15.35	16	37	50.114550	42	4	55.489440	12/01/2014 12:03	12/01/2014 12:03
cor-elv-1	188504.0910	1840790.0920	4.63	16	37	44.515210	42	4	49.243530	12/01/2014 13:26	12/01/2014 13:26
cor-elv-2	188503.5390	1840788.3300	4.64	16	37	44.457670	42	4	49.225800	12/01/2014 13:28	12/01/2014 13:28
cor-elv-3	188632.5680	1840755.3060	2.16	16	37	43.445560	42	4	53.591730	12/01/2014 13:36	12/01/2014 13:36
cor-elv-4	188654.8780	1840755.2740	2.48	16	37	43.455090	42	4	54.343830	12/01/2014 13:37	12/01/2014 13:37
crl tp 1	188807.6430	1840866.2860	26.02	16	37	47.135540	42	4	59.439140	12/01/2014 11:44	12/01/2014 11:44
gb arche	188555.1080	1841009.8630	10.24	16	37	51.682190	42	4	50.855250	12/01/2014 13:57	12/01/2014 13:57
mid t 1	188840.7300	1841254.3900	10.04	16	37	59.765040	42	5	0.363760	12/01/2014 14:10	12/01/2014 14:10
mid t 2	188810.7850	1841250.4700	10.08	16	37	59.623430	42	4	59.356180	12/01/2014 14:11	12/01/2014 14:11
mid t 3	188781.6970	1841224.9330	10.26	16	37	58.779680	42	4	58.388150	12/01/2014 14:12	12/01/2014 14:12
mid t 4	188753.4980	1841207.1670	10.55	16	37	58.188900	42	4	57.446220	12/01/2014 14:12	12/01/2014 14:12
mid t 5	188742.2350	1841197.1660	11.08	16	37	57.858520	42	4	57.071450	12/01/2014 14:13	12/01/2014 14:13
mid t 6	188741.7880	1841194.9510	12.10	16	37	57.786290	42	4	57.057470	12/01/2014 14:13	12/01/2014 14:13
mid t 7	188728.6210	1841187.0770	12.50	16	37	57.524140	42	4	56.617480	12/01/2014 14:13	12/01/2014 14:13
mid t 8	188726.6880	1841194.5260	12.31	16	37	57.765330	42	4	56.548650	12/01/2014 14:14	12/01/2014 14:14
mid t 9	188718.0390	1841196.5140	12.19	16	37	57.825840	42	4	56.256080	12/01/2014 14:14	12/01/2014 14:14
profile 1	188810.3450	1840740.3950	1.31	16	37	43.045220	42	4	59.592120	12/01/2014 13:42	12/01/2014 13:42
profile 2	188810.6340	1840747.5850	2.12	16	37	43.279040	42	4	59.598340	12/01/2014 13:42	12/01/2014 13:42
profile 3	188812.0490	1840756.7370	2.08	16	37	43.577140	42	4	59.641520	12/01/2014 13:43	12/01/2014 13:43
profile 4	188812.2760	1840764.8220	2.85	16	37	43.840030	42	4	59.645210	12/01/2014 13:43	12/01/2014 13:43
profile 5	188813.1010	1840773.1900	3.86	16	37	44.112390	42	4	59.668900	12/01/2014 13:44	12/01/2014 13:44
profile 6	188813.5500	1840779.9220	5.28	16	37	44.331400	42	4	59.680740	12/01/2014 13:44	12/01/2014 13:44
profile 7	188813.4900	1840787.1490	6.77	16	37	44.566270	42	4	59.675170	12/01/2014 13:44	12/01/2014 13:44
profile 8	188813.9860	1840794.9690	7.62	16	37	44.820640	42	4	59.688020	12/01/2014 13:45	12/01/2014 13:45
profile 9	188814.6920	1840803.6340	8.01	16	37	45.102620	42	4	59.707590	12/01/2014 13:45	12/01/2014 13:45
profile 10	188816.5580	1840812.6650	8.38	16	37	45.397010	42	4	59.766040	12/01/2014 13:45	12/01/2014 13:45
profile 11	188818.9360	1840823.2290	8.64	16	37	45.741480	42	4	59.841020	12/01/2014 13:46	12/01/2014 13:46
profile 12	188821.3160	1840831.6320	8.93	16	37	46.015730	42	4	59.917120	12/01/2014 13:46	12/01/2014 13:46
profile 13	188823.0900	1840838.2970	9.92	16	37	46.233170	42	4	59.973660	12/01/2014 13:46	12/01/2014 13:46
profile 14	188824.8610	1840843.8270	12.05	16	37	46.413760	42	5	0.030610	12/01/2014 13:47	12/01/2014 13:47
profile 15	188824.8600	1840848.4540	13.99	16	37	46.564120	42	5	0.028310	12/01/2014 13:47	12/01/2014 13:47
profile 16	188825.0940	1840852.8930	15.30	16	37	46.708520	42	5	0.034040	12/01/2014 13:47	12/01/2014 13:47
profile 17	188825.0770	1840855.4790	16.34	16	37	46.792570	42	5	0.032200	12/01/2014 13:48	12/01/2014 13:48
profile 18	188822.5830	1840858.4930	17.71	16	37	46.889320	42	4	59.946620	12/01/2014 13:48	12/01/2014 13:49

Appendix 2. GPS3: Farasan St3--CONTINUED

End Time		12/01/2014 14:21	12/01/2014 14:30	12/01/2014 11:08	12/01/2014 11:10	12/01/2014 11:11	12/01/2014 11:33	12/01/2014 11:36	12/01/2014 12:22	12/01/2014 11:48	12/01/2014 13:08	12/01/2014 13:09	12/01/2014 13:10	12/01/2014 13:10	12/01/2014 13:11	12/01/2014 13:12	12/01/2014 13:13	12/01/2014 13:13	12/01/2014 13:14	12/01/2014 13:15	12/01/2014 13:15	12/01/2014 13:16	12/01/2014 13:17	12/01/2014 13:17	12/01/2014 13:18	12/01/2014 13:19	12/01/2014 13:20	12/01/2014 13:20	12/01/2014 13:21	12/01/2014 13:21	12/01/2014 13:22	12/01/2014 13:22
Start Time		12/01/2014 14:21	12/01/2014 14:30	12/01/2014 11:08	12/01/2014 11:10	12/01/2014 11:11	12/01/2014 11:33	12/01/2014 11:36	12/01/2014 12:22	12/01/2014 11:48	12/01/2014 13:08	12/01/2014 13:09	12/01/2014 13:10	12/01/2014 13:10	12/01/2014 13:11	12/01/2014 13:12	12/01/2014 13:13	12/01/2014 13:13	12/01/2014 13:14	12/01/2014 13:15	12/01/2014 13:15	12/01/2014 13:16	12/01/2014 13:17	12/01/2014 13:17	12/01/2014 13:18	12/01/2014 13:19	12/01/2014 13:20	12/01/2014 13:20	12/01/2014 13:21	12/01/2014 13:21	12/01/2014 13:22	12/01/2014 13:22
Sec	2	4.472480	59.911000	52.426310	53.060520	53.368390	53.438940	54.207180	54.358730	1.294920	46.007300	47.168470	47.863380	48.564240	49.148320	49.899810	50.910320	51.976350	52.268890	52.046000	51.841390	51.013190	49.777390	48.742560	47.170440	46.157620	45.113600	44.950270	44.609320	44.570810	44.494110	45.090660
Min		5	4	4	4	4	4	4	4	ъ	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Dep	629	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
Sec		56.258920	1.260290	12.527050	12.545890	12.724760	45.872310	46.187860	50.018420	48.192070	46.373280	46.916460	47.114570	47.282330	47.347380	47.078690	47.068490	47.154670	47.723380	48.724660	49.164780	49.275680	48.953850	48.794100	48.211810	48.017260	47.661830	47.384480	47.056990	46.886680	46.610860	46.432140
Min		37	38	38	38	38	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37	37
Dep	922	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Elevation	(m)	8.52	9.07	-1.70	-1.73	-1.64	22.95	19.99	15.59	20.81	6.27	6.82	7.09	7.88	8.53	8.67	9.61	10.19	10.98	11.32	10.46	8.96	8.41	7.91	7.12	6.60	5.92	5.57	5.15	5.38	5.12	5.79
M	North	1841144.7600	1841300.5820	1841650.4050	1841650.7100	1841656.0790	1840830.0230	1840839.3970	1840957.1660	1840897.9840	1840848.6500	1840864.8570	1840870.6500	1840875.5070	1840877.2550	1840868.6650	1840867.9140	1840870.1030	1840887.4710	1840918.3680	1840931.9960	1840935.7660	1840926.4010	1840921.9350	1840904.7030	1840899.1570	1840888.6750	1840880.2140	1840870.2880	1840865.0660	1840856.6140	1840850.8580
5	East	188961.0090	188827.9730	188611.0600	188629.8770	188639.0880	188629.1260	188652.0510	188658.2650	188863.1540	188408.9470	188443.6280	188464.3270	188485.1880	188502.5390	188524.7060	188554.6700	188586.3250	188595.2560	188589.0950	188583.2240	188558.7120	188521.9170	188491.1550	188444.2690	188414.1440	188383.0210	188378.0520	188367.7940	188366.5750	188364.1760	188381.7880
Sample No.		samp-22	samp-23	s-lev-1	s-lev-2	s-lev-3	smp-18	smp-19	smp-21	smpl 20	topo coral 1	topo coral 2	topo coral 3	topo coral 4	topo coral 5	topo coral 6	topo coral 7	topo coral 8	topo coral 9	topo coral 10	topo coral 11	topo coral 12	topo coral 13	topo coral 14	topo coral 15	topo coral 16	topo coral 17	topo coral 18	topo coral 19	topo coral 20	topo coral 21	topo coral 22

ONTINUED
asan St3—C
. GPS3: Far
Appendix 2

Comple No.	D	TM	Elevation	200		J	200	A.1.4	500	Ctout Time	F and Time
Sample NO.	East	North	(m)	neg		Sec	neg	INII	ספר	סומנר וווווה	
topo coral 23	188392.7640	1840850.6580	6.10	16	37	46.430840	42	4	45.460750	12/01/2014 13:23	12/01/2014 13:23
topo coral 24	188399.1430	1840860.1870	6.55	16	37	46.743580	42	4	45.671110	12/01/2014 13:23	12/01/2014 13:23
topo coral 25	188420.6640	1840868.7080	6.87	16	37	47.030740	42	4	46.392410	12/01/2014 13:23	12/01/2014 13:23

Appendix 2. GPS4: Farasan St4—CONTINUED

			ר								
		TM	Elevation	č	A.11.2			. 10 m			E
sample No.	East	North	(m)	neg	MIM	Sec	neg		Sec	start lime	End lime
base 1	191788.4450	1842690.9560	5.26	16	38	47.846760	42	9	39.038260		-
BASE_1	191788.4450	1842690.9560	5.26	16	38	47.846760	42	9	39.038260		-
farasan st 2 bas	191903.0770	1842808.6630	7.07	16	38	51.726350	42	9	42.845720	12/01/2014 15:57	12/01/2014 15:57
old crs ln 1	191693.9140	1842868.4340	1.86	16	38	53.570700	42	9	35.764580	12/01/2014 16:37	12/01/2014 16:37
prof 2-1	191786.5520	1842694.5690	5.08	16	38	47.963320	42	9	38.972650	12/01/2014 16:01	12/01/2014 16:01
prof 2-2	191784.9660	1842697.0810	4.97	16	38	48.044230	42	9	38.917960	12/01/2014 16:02	12/01/2014 16:02
prof 2-3	191783.7100	1842699.9460	4.94	16	38	48.136740	42	9	38.874230	12/01/2014 16:02	12/01/2014 16:02
prof 2-4	191783.5250	1842700.2470	4.91	16	38	48.146450	42	9	38.867840	12/01/2014 16:04	12/01/2014 16:04
prof 2-5	191783.4310	1842700.4620	4.79	16	38	48.153380	42	9	38.864560	12/01/2014 16:06	12/01/2014 16:06
prof 2-6	191783.0960	1842701.1360	4.71	16	38	48.175130	42	9	38.852940	12/01/2014 16:08	12/01/2014 16:08
prof 2-7	191782.8890	1842701.5210	2.90	16	38	48.187560	42	9	38.845790	12/01/2014 16:09	12/01/2014 16:09
prof 2-8	191779.2920	1842708.4280	2.66	16	38	48.410340	42	9	38.721140	12/01/2014 16:10	12/01/2014 16:10
prof 2-9	191778.5810	1842710.3700	2.59	16	38	48.473130	42	9	38.696230	12/01/2014 16:12	12/01/2014 16:12
prof 2-10	191778.5880	1842711.1700	2.83	16	38	48.499130	42	9	38.696060	12/01/2014 16:13	12/01/2014 16:13
prof 2-11	191776.5630	1842713.3500	2.65	16	38	48.569020	42	9	38.626720	12/01/2014 16:14	12/01/2014 16:14
prof 2-12	191774.0640	1842718.3210	2.79	16	38	48.729420	42	9	38.540070	12/01/2014 16:14	12/01/2014 16:14
prof 2-13	191773.1520	1842719.5790	2.44	16	38	48.769880	42	9	38.508690	12/01/2014 16:14	12/01/2014 16:14
prof 2-14	191771.0780	1842723.1220	2.48	16	38	48.884060	42	9	38.437030	12/01/2014 16:15	12/01/2014 16:15
prof 2-15	191769.5480	1842726.7180	2.88	16	38	49.000230	42	9	38.383710	12/01/2014 16:15	12/01/2014 16:15
prof 2-16	191766.7340	1842731.1530	2.86	16	38	49.143050	42	9	38.286660	12/01/2014 16:16	12/01/2014 16:16
prof 2-17	191764.4890	1842735.8040	2.98	16	38	49.293180	42	9	38.208700	12/01/2014 16:16	12/01/2014 16:16
prof 2-18	191762.7840	1842740.4190	3.02	16	38	49.442350	42	9	38.148970	12/01/2014 16:17	12/01/2014 16:17
prof 2-19	191758.6820	1842746.9400	3.00	16	38	49.652360	42	9	38.007490	12/01/2014 16:17	12/01/2014 16:17
prof 2-20	191754.9960	1842754.2930	2.96	16	38	49.889620	42	9	37.879640	12/01/2014 16:18	12/01/2014 16:18
prof 2-21	191748.6740	1842766.0290	2.85	16	38	50.268100	42	9	37.660780	12/01/2014 16:19	12/01/2014 16:19

Δ
Щ
ž
F
Z
В
Ţ
ţ1
S
ar
as
ar
Щ.
24
Ğ,
Ċ.
2
. <u> </u>
P
ē
p
◄

		12/01/2014 16:20	12/01/2014 16:20	12/01/2014 16:21	12/01/2014 16:23	12/01/2014 16:23	12/01/2014 16:24	12/01/2014 16:25	12/01/2014 16:26	12/01/2014 16:27	12/01/2014 16:28	12/01/2014 16:28	12/01/2014 16:29	12/01/2014 16:30	12/01/2014 16:31	12/01/2014 16:31	12/01/2014 16:32	12/01/2014 16:33	12/01/2014 16:33	12/01/2014 16:34	12/01/2014 16:35	12/01/2014 16:50	12/01/2014 16:56	12/01/2014 16:57	12/01/2014 17:01	12/01/2014 17:01	12/01/2014 17:02
	start lime	12/01/2014 16:20	12/01/2014 16:20	12/01/2014 16:21	12/01/2014 16:23	12/01/2014 16:23	12/01/2014 16:24	12/01/2014 16:25	12/01/2014 16:26	12/01/2014 16:27	12/01/2014 16:28	12/01/2014 16:28	12/01/2014 16:29	12/01/2014 16:30	12/01/2014 16:31	12/01/2014 16:31	12/01/2014 16:32	12/01/2014 16:33	12/01/2014 16:33	12/01/2014 16:34	12/01/2014 16:35	12/01/2014 16:49	12/01/2014 16:56	12/01/2014 16:57	12/01/2014 17:01	12/01/2014 17:01	12/01/2014 17:02
	Sec	37.546010	37.231230	37.039440	36.945490	36.878380	36.362350	36.163500	36.119670	36.089670	36.054540	36.003730	35.961320	35.963610	35.864320	35.864030	35.804970	35.727970	35.715040	35.714950	35.599820	39.108510	44.448850	44.328570	46.480390	46.347630	48.065770
A.11.4	MIM	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
ć	neg	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
ŝ	Sec	50.472540	50.823540	51.122460	51.529840	52.212450	52.565130	52.913900	52.978410	53.034970	53.100390	53.185250	53.250420	53.338320	53.434380	53.434450	53.541560	53.678680	53.701200	53.701540	53.907360	48.439760	53.297860	53.346700	56.226080	56.304800	58.968880
	uiM	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
ć	neg	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Elevation	(m)	2.80	2.56	2.40	2.75	2.74	2.60	2.45	2.53	2.60	1.54	1.52	2.25	2.32	3.11	3.11	2.03	1.49	1.42	1.42	1.32	4.50	4.78	3.50	4.78	4.00	4.71
IM	North	1842772.3670	1842783.2990	1842792.5760	1842805.1480	1842826.1750	1842837.2450	1842848.0590	1842850.0620	1842851.8150	1842853.8420	1842856.4740	1842858.4970	1842861.2000	1842864.1970	1842864.2000	1842867.5200	1842871.7710	1842872.4690	1842872.4800	1842878.8600	1842709.1670	1842856.3180	1842857.8720	1842945.5220	1842948.0000	1843029.2140
5	East	191745.3620	191736.1830	191730.6290	191728.0240	191726.3380	191711.1920	191705.4510	191704.1800	191703.3160	191702.3030	191700.8340	191699.6050	191699.7120	191696.8110	191696.8020	191695.0980	191692.8760	191692.5030	191692.5000	191689.1780	191790.7920	191951.3140	191947.7690	192012.8590	192008.9570	192061.0900
	sample No.	prof 2-22	prof 2-23	prof 2-24	prof 2-25	prof 2-26	prof 2-27	prof 2-28	prof 2-29	prof 2-30	prof 2-31	prof 2-32	prof 2-33	prof 2-34	prof 2-35	prof 2-36	prof 2-37	prof 2-38	prof 2-39	prof 2-40 crs	prof 2-40 crt	smpl 24	wcn 1	wcn 2	wcn 3	wcn 4	wcn 5

Appendix 2	2. GPS5: Solar	hCONTINUED									
	UTN	1 Zone37	Elevation	Č	A.1.4		200	A1:5		Ctent Time	T and Times
sample No.	East	North	(m)	Leg		Sec	neg		Sec	Start Hime	
bas-1	201970.7520	1852803.0290	6.48	16	44	21.239880	42	12	17.569040	ı	
bas-1	201970.3280	1852798.8360	5.70	16	44	21.103400	42	12	17.556720	ı	
m-s-lv-1	201910.0970	1852823.0560	-0.01	16	44	21.863120	42	12	15.513410	11/30/2014 12:03:12 PM	11/30/2014 12:03:14 PM
m-s-lv-2	201895.3780	1852809.9270	0.01	16	44	21.429650	42	12	15.023110	11/30/2014 12:03:50 PM	11/30/2014 12:03:52 PM
sampl-13	201977.9900	1852875.8270	9.22	16	44	23.609450	42	12	17.778680	11/30/2014 11:42:55 AM	11/30/2014 11:43:12 AM
sampl-14	201958.7780	1852878.3820	6.15	16	44	23.683700	42	12	17.129370	11/30/2014 11:46:53 AM	11/30/2014 11:46:55 AM
sampl-15	201956.8700	1852897.5930	8.20	16	44	24.307270	42	12	17.055890	11/30/2014 11:52:18 AM	11/30/2014 11:52:20 AM

\sim
ш
=
2
_
—
~
\circ
\odot
Ŧ
<u> </u>
σ
_
0
S
••
S
(A)
õ′
Ċ
•
\sim
×
÷=
2
Ð
Ó
-

Appendix 2. GPS6: Dahban St1--CONTINUED

	UTN	1 Zone37	Elevation	Geologic		A 41	,	ć			i i	
sample No.	East	North	(u)	Code	Deg	uIM	Sec	Deg	MIN	Sec	start lime	End lime
1	777333.3160	2000525.3370	6.72	BR	18	4	32.394120	41	37	12.448960	03/12/2014 12:03	03/12/2014 12:03
2	777343.9830	2000513.5480	6.66	BR	18	4	32.005990	41	37	12.805770	03/12/2014 12:05	03/12/2014 12:05
£	777350.7190	2000507.0100	6.55	в	18	4	31.790350	41	37	13.031570	03/12/2014 12:06	03/12/2014 12:06
4	777369.2070	2000483.5080	6.53	в	18	4	31.017880	41	37	13.648510	03/12/2014 12:07	03/12/2014 12:08
5	777376.6570	2000469.2640	6.05	D	18	4	30.551460	41	37	13.894850	03/12/2014 12:08	03/12/2014 12:09
9	777395.6120	2000449.8090	5.68	۵	18	4	29.910350	41	37	14.529630	03/12/2014 12:10	03/12/2014 12:10
7	777408.9070	2000433.2660	5.77	в	18	4	29.366460	41	37	14.973490	03/12/2014 12:11	03/12/2014 12:11
∞	777421.6660	2000417.2870	5.90	в	18	4	28.841200	41	37	15.399370	03/12/2014 12:12	03/12/2014 12:12
6	777430.9770	2000405.8480	5.96	в	18	4	28.465060	41	37	15.710290	03/12/2014 12:13	03/12/2014 12:13
10	777435.8290	2000399.8200	5.94	J	18	4	28.266910	41	37	15.872290	03/12/2014 12:13	03/12/2014 12:14
11	777448.6990	2000384.7370	5.95	J	18	4	27.770700	41	37	16.302400	03/12/2014 12:15	03/12/2014 12:15
12	777480.3970	2000344.6480	6.14	С	18	4	26.452990	41	37	17.360290	03/12/2014 12:17	03/12/2014 12:17
13	777486.8540	2000336.7980	6.31	J	18	4	26.194820	41	37	17.575920	03/12/2014 12:18	03/12/2014 12:18
14	777488.2310	2000334.6440	6.42	в	18	4	26.124180	41	37	17.621690	03/12/2014 12:18	03/12/2014 12:18
15	777496.9440	2000323.3560	6.58	в	18	4	25.753250	41	37	17.912340	03/12/2014 12:19	03/12/2014 12:19
16	777508.0100	2000310.7590	6.70	в	18	4	25.338670	41	37	18.282350	03/12/2014 12:20	03/12/2014 12:20
17	777522.8120	2000288.8550	6.64	в	18	4	24.619880	41	37	18.774810	03/12/2014 12:22	03/12/2014 12:22
18	777528.6410	2000278.1550	6.25	С	18	4	24.269380	41	37	18.967730	03/12/2014 12:22	03/12/2014 12:22
19	777546.6600	2000262.5620	6.20	С	18	4	23.754190	41	37	19.572580	03/12/2014 12:24	03/12/2014 12:24
20	777555.5130	2000251.7850	5.74	С	18	4	23.399810	41	37	19.868250	03/12/2014 12:24	03/12/2014 12:24
21	777557.0330	2000249.0620	5.62	В	18	4	23.310600	41	37	19.918600	03/12/2014 12:25	03/12/2014 12:25
22	777560.9770	2000243.4030	5.24	В	18	4	23.124850	41	37	20.049880	03/12/2014 12:26	03/12/2014 12:26
23	777562.0050	2000242.0220	5.15	J	18	4	23.079490	41	37	20.084150	03/12/2014 12:26	03/12/2014 12:26

	UTN	l Zone37	Elevation	Geologic								
Sample No.	East	North	(m)	Code	Deg	Min	Sec	Deg	Min	Sec	Start Time	End Time
24	777565.0350	2000237.2750	5.09	J	18	4	22.923780	41	37	20.184820	03/12/2014 12:27	03/12/2014 12:27
25	777585.7500	2000238.3660	5.61	BR	18	4	22.949680	41	37	20.889340	03/12/2014 12:30	03/12/2014 12:30
26	777587.0230	2000239.5740	5.62	В	18	4	22.988350	41	37	20.933210	03/12/2014 12:30	03/12/2014 12:30
27	777600.4180	2000232.0510	5.71	в	18	4	22.737640	41	37	21.384780	03/12/2014 12:31	03/12/2014 12:31
28	777605.5550	2000215.8550	5.88	BR	18	4	22.208800	41	37	21.551550	03/12/2014 12:32	03/12/2014 12:32
29	777611.0550	2000205.9150	5.73	BR	18	4	21.883160	41	37	21.733650	03/12/2014 12:33	03/12/2014 12:33
30	777613.8450	2000198.5020	5.29	D	18	4	21.640920	41	37	21.824890	03/12/2014 12:34	03/12/2014 12:34
31	777616.1240	2000190.0540	5.45	BR	18	4	21.365270	41	37	21.898260	03/12/2014 12:35	03/12/2014 12:35
32	777617.0770	2000181.8510	5.53	LSS	18	4	21.098220	41	37	21.926690	03/12/2014 12:36	03/12/2014 12:36
33	777618.2510	2000176.5520	5.12	LSS	18	4	20.925430	41	37	21.964030	03/12/2014 12:36	03/12/2014 12:36
34	777617.2240	2000176.2390	2.92	۵	18	4	20.915720	41	37	21.928980	03/12/2014 12:39	03/12/2014 12:39
35	777622.8210	2000167.9390	1.43	۵	18	4	20.643340	41	37	22.115170	03/12/2014 12:40	03/12/2014 12:40
36	777630.5030	2000158.8140	2.85	D	18	4	20.343190	41	37	22.371850	03/12/2014 12:42	03/12/2014 12:42
37	777631.8090	2000156.0490	5.42	LSS	18	4	20.252700	41	37	22.414890	03/12/2014 12:43	03/12/2014 12:43
38	777632.4460	2000151.3630	5.67	LSS	18	4	20.100090	41	37	22.434270	03/12/2014 12:44	03/12/2014 12:44
39	777632.6340	2000150.8530	5.92	WSS	18	4	20.083440	41	37	22.440420	03/12/2014 12:44	03/12/2014 12:44
40	777643.8080	2000141.9550	6.36	WSS	18	4	19.789050	41	37	22.815850	03/12/2014 12:45	03/12/2014 12:45
41	777656.1170	2000126.1080	6.41	WSS	18	4	19.268250	41	37	23.226510	03/12/2014 12:46	03/12/2014 12:46
bas-1	777697.3130	2000024.3760	6.82		18	4	15.942480	41	37	24.577380	03/12/2014 10:38	03/12/2014 10:41
BM-638	773181.9940	2008155.5290	5.98		18	8	42.319190	41	34	54.998480	03/12/2014 09:08	03/12/2014 09:08
BM 651	777234.6470	2000649.1090	12.88	WSS	18	4	36.462800	41	37	9.155390	03/12/2014 13:49	03/12/2014 13:49
BM 652	777357.9490	2000127.8200	3.00	WSS	18	4	19.461600	41	37	13.094280	03/12/2014 13:58	03/12/2014 13:58
BM 652	777357.9490	2000127.8200	3.00	WSS	18	4	19.461600	41	37	13.094280	03/12/2014 13:50	03/12/2014 13:50
BM 654	778044.3690	1999233.7100	11.54	WSS	18	3	50.081820	41	37	35.989490	03/12/2014 14:06	03/12/2014 14:06
BM 654-1	778044.3680	1999233.7190	11.58	WSS	18	3	50.082120	41	37	35.989450	03/12/2014 14:09	03/12/2014 14:09
C SPT H	777548.2440	2000209.0700	4.03		18	4	22.014740	41	37	19.600590	03/12/2014 16:50	03/12/2014 16:50
CORAL	777659.1570	2000185.9880	3.25		18	4	21.213250	41	37	23.358760	03/12/2014 17:32	03/12/2014 17:32
CORAL-1	777659.1540	2000185.9810	3.25		18	4	21.213010	41	37	23.358660	03/12/2014 17:33	03/12/2014 17:33
END L	777657.0480	2000125.6530	6.43		18	4	19.253040	41	37	23.257950	03/12/2014 11:49	03/12/2014 11:49
GMN-538	773202.0830	2008172.8610	7.36		18	8	42.873380	41	34	55.689770	I	
GREFLA	77771.7740	1999982.6100	14.35	SS	18	4	14.550480	41	37	27.087720	03/12/2014 14:52	03/12/2014 14:52
HAB002	777739.3320	1999928.6740	12.44	SS	18	4	12.812320	41	37	25.959150	03/12/2014 14:44	03/12/2014 14:44
HAB003	777739.2990	1999929.9700	10.18	D	18	4	12.854470	41	37	25.958650	03/12/2014 14:39	03/12/2014 14:39
HAB004	777739.3020	1999930.2840	9.56	D	18	4	12.864640	41	37	25.958900	03/12/2014 14:38	03/12/2014 14:38
HAB005	777756.8310	1999955.4180	11.48	D	18	4	13.673520	41	37	26.566760	03/12/2014 14:36	03/12/2014 14:36
HAB008	777692.0280	1999797.7880	10.03	8	18	4	8.579780	41	37	24.288360	03/12/2014 14:28	03/12/2014 14:28

Appendix 2. GPS6: Dahban St1--CONTINUED

on alumes	UTN	1 Zone37	Elevation	Geologic	Deg	Min	Sar	Deg	Min	Sar	Start Time	End Time
	East	North	(m)	Code	2			2				
HAB010	777709.7670	2000171.4670	4.32		18	4	20.717840	41	37	25.071680	03/12/2014 15:43	03/12/2014 15:43
HAB011	777710.0020	2000170.8810	5.30	C	18	4	20.698690	41	37	25.079400	03/12/2014 15:39	03/12/2014 15:39
HAB012	777699.4430	2000172.5140	3.34		18	4	20.756660	41	37	24.721350	03/12/2014 15:49	03/12/2014 15:49
HAB013	777698.8570	2000172.7960	3.57		18	4	20.766090	41	37	24.701570	03/12/2014 15:49	03/12/2014 15:49
HAB014	777699.3910	2000173.0900	3.26		18	4	20.775410	41	37	24.719860	03/12/2014 15:50	03/12/2014 15:50
HAB015	777710.5760	2000170.7850	4.62		18	4	20.695320	41	37	25.098850	03/12/2014 16:01	03/12/2014 16:01
HAB016	777710.3010	2000171.1430	4.21		18	4	20.707070	41	37	25.089700	03/12/2014 16:02	03/12/2014 16:02
HAB017	777735.5020	2000187.3990	4.63		18	4	21.223810	41	37	25.953960	03/12/2014 16:22	03/12/2014 16:22
HAB018	777733.4850	2000185.3640	4.45		18	4	21.158620	41	37	25.884450	03/12/2014 16:24	03/12/2014 16:24
HAB020	777647.3050	2000192.8550	4.28		18	4	21.441910	41	37	22.959300	03/12/2014 16:37	03/12/2014 16:37
HAB021	777621.5650	2000175.8760	4.90		18	4	20.901930	41	37	22.076340	03/12/2014 16:45	03/12/2014 16:45
HAB022	777578.5600	2000177.4690	3.67		18	4	20.973560	41	37	20.615600	03/12/2014 16:47	03/12/2014 16:47
HAB023	777346.5870	2000516.4250	6.82		18	4	32.098310	41	37	12.895670	03/12/2014 17:00	03/12/2014 17:00
HAB024	777461.0340	2000340.1830	5.03		18	4	26.316790	41	37	16.700080	03/12/2014 17:07	03/12/2014 17:07
HAB024-1	777462.4140	2000336.1640	5.97		18	4	26.185520	41	37	16.745040	03/12/2014 17:08	03/12/2014 17:08
HAB025	777507.1110	2000263.7880	5.96		18	4	23.812310	41	37	18.229110	03/12/2014 17:11	03/12/2014 17:11
HAB026	777557.0090	2000236.8950	5.13		18	4	22.915130	41	37	19.911880	03/12/2014 17:24	03/12/2014 17:24
HAB027	777702.6070	2000172.2580	3.82		18	4	20.746880	41	37	24.828730	03/12/2014 17:36	03/12/2014 17:36
HAB028	777701.4700	2000171.8410	4.27		18	4	20.733860	41	37	24.789900	03/12/2014 17:39	03/12/2014 17:39
HAB-007	777710.7850	1999820.8220	15.29	WSS	18	4	9.319810	41	37	24.936920	03/12/2014 14:23	03/12/2014 14:23
OALD-	777845.5990	2000199.3000	9.97	SS	18	4	21.559790	41	37	29.701310	03/12/2014 15:19	03/12/2014 15:20
OALD-	777744.0140	2000168.3860	8.74	SS	18	4	20.601890	41	37	26.234070	03/12/2014 15:23	03/12/2014 15:23
ORGFLA	777741.2460	1999930.7900	13.64	SS	18	4	12.880210	41	37	26.025210	03/12/2014 14:47	03/12/2014 14:47
SEA LVL 1	776785.1360	1999161.5600	0.03	WSS	18	3	48.317550	41	36	53.162420	03/12/2014 13:23	03/12/2014 13:23
SEA LVL 2	776772.3120	1999164.9240	-0.01	WSS	18	3	48.432810	41	36	52.728260	03/12/2014 13:23	03/12/2014 13:23
SEA LVL 3	776772.3030	1999164.9320	-0.02	WSS	18	3	48.433050	41	36	52.727930	03/12/2014 13:24	03/12/2014 13:24
SEA LVL 4	776755.0860	1999169.8200	0.01	WSS	18	3	48.599860	41	36	52.145200	03/12/2014 13:24	03/12/2014 13:24
SST1	77771.6400	1999823.3240	17.31	SS	18	4	9.400740	41	37	24.967170	03/12/2014 14:25	03/12/2014 14:25
SSTSMPL1	77771.6740	1999944.2770	21.04	SS	18	4	13.304530	41	37	27.065810	03/12/2014 14:49	03/12/2014 14:49
START L	777323.3990	2000538.9850	7.06	В	18	4	32.842290	41	37	12.118520	03/12/2014 11:59	03/12/2014 11:59
TPSST1	77773.1580	1999929.3360	24.14	SS	18	4	12.818190	41	37	27.108990	03/12/2014 14:56	03/12/2014 14:56
WAD FL B	777735.5030	2000187.4030	4.62		18	4	21.223970	41	37	25.954010	03/12/2014 16:20	03/12/2014 16:20

Appendix 2. GPS6: Dahban St1--CONTINUED

Appendix 2. G	BS7: AlBirk	St1CONTINU	JED									
Comple No.	5	ITM	Elevation	Geologic	200	Min	Soc	200	Min	503	Ctout Time	End Time
Sample NO.	East	North	(m)	Code	neg	INIIN	Sec	neg		Jac		
ctot-1	771320.2920	2011198.7240	3.30	С	18	10	22.087630	41	33	53.145460	12/04/2014 15:29	12/04/2014 15:29
ctot-2	771325.7340	2011185.3700	3.43	С	18	10	21.651080	41	33	53.324150	12/04/2014 15:30	12/04/2014 15:30
ctot-3	771334.2730	2011202.7310	3.60	С	18	10	22.211520	41	33	53.622780	12/04/2014 15:30	12/04/2014 15:30
GMN-538	773202.0830	2008172.8610	7.46		18	8	42.873380	41	34	55.689770		
HAB043	771358.2400	2011297.2870	2.29	CLAM	18	10	25.274270	41	33	54.482710	12/04/2014 15:34	12/04/2014 15:34
Hab044	771307.8080	2011199.6760	3.19	J	18	10	22.124230	41	33	52.721370	12/04/2014 15:28	12/04/2014 15:28
INSCRIPTION	772883.9790	2007168.5970	13.67		18	8	10.374440	41	34	44.395520	12/04/2014 16:49	12/04/2014 16:49
SLVL-1	770930.8330	2011103.0720	0.02		18	10	19.155100	41	33	39.856370	12/04/2014 16:22	12/04/2014 16:22
SLVL-2	770926.1550	2011097.5930	0.00		18	10	18.979150	41	33	39.694690	12/04/2014 16:22	12/04/2014 16:23
SLVL-3	770915.7230	2011090.1180	-0.02		18	10	18.740890	41	33	39.336400	12/04/2014 16:23	12/04/2014 16:23
TOTC-1	771366.6050	2011290.6040	3.20		18	10	25.053210	41	33	54.764010	12/04/2014 15:35	12/04/2014 15:35
TOTC-2	771371.8630	2011302.1890	3.20		18	10	25.427420	41	33	54.948290	12/04/2014 15:35	12/04/2014 15:35
TOTC-3	771380.7830	2011305.0200	3.50		18	10	25.515390	41	33	55.252990	12/04/2014 15:36	12/04/2014 15:36
TOTC-4	771509.4440	2010766.3690	4.69	J	18	10	7.947690	41	33	59.372100	12/04/2014 16:11	12/04/2014 16:11
TOTC-5	771526.5020	2010779.1870	4.85	J	18	10	8.356600	41	33	59.958260	12/04/2014 16:12	12/04/2014 16:12
TOTC-6	771520.7070	2010757.8600	4.82	С	18	10	7.665980	41	33	59.751070	12/04/2014 16:13	12/04/2014 16:13
TOTC-7	771511.1320	2010744.0650	4.53	C	18	10	7.221930	41	33	59.418890	12/04/2014 16:13	12/04/2014 16:13

-
()
ш
=
)
_
~
~
_
-
<u> </u>
/
-
\cap
\sim
()
Ý
_
<u>``</u>
ب
ω
• /
\sim
<u> </u>
_
·
\sim
_
<
_
1
10
¥,
<u> </u>
(1)
-
1.1
×
0
ē
_
()
-
0

<u>, 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 </u>	0 0 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	90 2018581.3420 4.20 70 2021680.3600 0.01 30 2021690.5400 0.00 30 2021700.3670 -0.02 90 2014604.2560 3.45 90 2014606.1530 3.88 90 2021670.5410 3.45	767392.7240 2018580.2290 4.22 767391.4690 2018581.3420 4.20 765897.1570 2021680.3600 0.01 765907.5230 2021680.3670 0.00 765907.5230 2021690.5400 0.00 765907.5230 2021700.3670 -0.02 765903.0910 2014606.1530 3.45 767060.1390 2014606.1530 3.45 765903.9910 2021670.5410 3.45
5 18 16 4.928720 41 4 18 15 36.293550 41 7 18 15 36.258180 41	0 3.45 18 16 4.928720 41 0 3.44 18 15 36.293550 41 0 3.57 18 15 36.258180 41	10 2021670.5410 3.45 18 16 4.928720 41 80 2020789.2240 3.44 18 15 36.293550 41 60 2020788.1600 3.57 18 15 36.258180 41	765903.9910 2021670.5410 3.45 18 16 4.928720 41 765873.8080 2020789.2240 3.44 18 15 36.293550 41 765875.5160 2020788.1600 3.57 18 15 36.293550 41
2 2 2 0 0 1 1 8 2 2 2 1 8 1 8 1 8 1 8 1 8 1 8 1 8	0 0.00 18 0 -0.02 18 0 3.45 18 0 3.45 18 0 3.45 18 0 3.45 18 0 3.45 18 0 3.45 18 0 3.45 18 0 3.45 18 0 3.57 18	30 2021690.5400 0.00 18 30 2021700.3670 -0.02 18 00 2014604.2560 3.45 18 90 2014606.1530 3.88 18 10 2021670.5410 3.45 18 10 2001670.5410 3.45 18 10 2021670.5410 3.45 18 10 2021670.5410 3.45 18 10 2021670.5410 3.45 18	765907.5230 2021690.5400 0.00 18 765916.6630 2021700.3670 -0.02 18 765049.2000 2014604.2560 3.45 18 767060.1390 2014606.1530 3.88 18 76593.9910 2021670.5410 3.45 18 765873.8080 2021670.5410 3.45 18 765873.5160 2020789.2240 3.47 18
0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0	10 4.20 BR 00 0.01 0 01 0.00 0.00 02 -0.02 0 03 3.45 3.45 03 3.45 3.45 03 3.45 3.45 03 3.45 3.45 03 3.45 3.45	90 2018581.3420 4.20 BR 70 2021680.3600 0.01 8 30 2021690.5400 0.00 9 30 2021690.3670 -0.02 9 30 20214604.2560 3.45 9 90 2014606.1530 3.88 9 91 2021670.5410 3.45 9 92 20147606.1530 3.88 9 93 2021670.5410 3.45 9 90 201670.5410 3.45 9 90 2021670.5410 3.45 9	767391.4690 2018581.3420 4.20 BR 765897.1570 2021680.3600 0.01 0.01 765907.5230 2021690.5400 0.00 0.01 765916.6630 2021500.3670 -0.02 0.00 767049.2000 2014604.2560 3.45 3.45 767060.1390 2014604.2560 3.45 3.45 765913.0910 2014604.2560 3.45 3.45 76593.3910 2014605.1530 3.88 3.45 76593.3910 2021670.5410 3.45 3.45 765873.8080 2020789.2240 3.45 3.45 765875.5160 2020783.2400 3.57 3.57
	0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1	90 2018581.3420 4.2 70 2021680.3600 0.0 30 2021690.5400 0.0 30 2021690.5400 0.0 30 2021700.3670 -0.0 30 20217560 3.4 90 2014604.2560 3.4 90 2014606.1530 3.4 80 2027670.5410 3.4 80 2027789.2240 3.4 80 2020788.1600 3.5	767391.4690 2016530.2290 4.2 767391.4690 2018581.3420 4.2 765907.5230 2021690.5400 0.0 765907.5230 2021690.5400 0.0 765916.6630 2021700.3670 -0.0 767049.2000 2014604.2560 3.4 767903.9910 2014606.1530 3.8 765903.9910 2021670.5410 3.4 765873.8080 2021670.5410 3.4 765873.5.5160 2020789.2240 3.4

-
()
111
_
_
_
/
_
~
~
\sim
()
\sim
()
\sim
<u> </u>
\sim
S
~
<u> </u>
<u> </u>
.=
<u> </u>
=
_
<
_
∞
S
<u> </u>
(1)
\sim
:
\sim
×
<u> </u>
d)

i	id Time	/2014 09:56	/2014 09:57	/2014 09:59	/2014 10:00	/2014 10:02	/2014 10:03	/2014 10:07	/2014 10:48	/2014 10:51	/2014 10:52	/2014 11:43	/2014 11:45	/2014 11:45	/2014 11:46	/2014 11:47	/2014 11:47	/2014 11:48	/2014 11:48	/2014 11:49	/2014 11:50	/2014 11:50	/2014 11:51	/2014 11:52	/2014 11:52	/2014 11:53	/2014 11:53	/2014 11:26	/2014 11:27	/2014 11:27	/2014 11:29	/2014 11:30	/2014 11:32	/2014 11:32	/2014 11:33	/2014 11:34	3011 11.35
	Ţ	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05,	12/05
i	Start Time	12/05/2014 09:56	12/05/2014 09:57	12/05/2014 09:59	12/05/2014 10:00	12/05/2014 10:02	12/05/2014 10:03	12/05/2014 10:07	12/05/2014 10:48	12/05/2014 10:51	12/05/2014 10:52	12/05/2014 11:43	12/05/2014 11:45	12/05/2014 11:45	12/05/2014 11:46	12/05/2014 11:46	12/05/2014 11:47	12/05/2014 11:48	12/05/2014 11:48	12/05/2014 11:49	12/05/2014 11:49	12/05/2014 11:50	12/05/2014 11:51	12/05/2014 11:52	12/05/2014 11:52	12/05/2014 11:53	12/05/2014 11:53	12/05/2014 11:26	12/05/2014 11:27	12/05/2014 11:27	12/05/2014 11:29	12/05/2014 11:30	12/05/2014 11:32	12/05/2014 11:32	12/05/2014 11:33	12/05/2014 11:34	12/05/2014 11:35
,	Sec	48.550550	49.037430	49.138750	48.099320	48.196770	48.090950	46.789650	7.602980	7.126920	6.310110	11.852780	11.641420	11.151350	10.907880	10.394710	9.569160	8.726090	8.330440	8.284860	7.377810	020707.9	5.944710	5.200830	4.964910	4.625030	4.615670	8.175850	8.751350	9.472140	10.520050	10.741820	10.890100	10.829650	10.163070	9.942440	9.080110
	MIN	35	35	35	35	35	35	35	38	38	38	39	68	39	68	68	68	68	68	68	68	68	39	39	68	39	39	68	68	68	68	39	39	39	39	39	39
d	Deg	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	41
,	Sec	19.365860	20.419820	21.965870	22.162440	21.417980	20.207190	18.457960	58.752310	58.884990	58.796630	24.964250	24.941180	24.783400	24.754730	24.643930	24.454220	24.227430	24.087610	24.093000	23.964330	23.817030	23.684910	24.200930	24.390240	24.543060	24.542370	19.220680	19.793020	20.776590	21.540200	23.332610	24.923260	25.456110	26.639180	27.595980	28.865820
	MIN	7	7	7	7	7	7	7	3	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
d	Deg	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
Geologic	Code											SS	SS	SS	BR	BR	BR	BR	BR	۵	۵	۵	۵	ပ	υ	С	D										
Elevation	(m)	6.49	6.87	6.84	6.62	6.43	6.33	3.57	6.58	6.63	5.93	7.89	8.05	7.82	7.40	7.15	6.97	6.24	5.95	5.81	4.83	4.69	4.47	4.24	4.03	3.14	3.15	7.16	7.54	7.52	7.09	7.23	7.55	7.73	7.55	7.65	7.24
۶	North	2005626.2040	2005658.8240	2005706.4200	2005712.0350	2005689.1770	2005651.8910	2005597.5480	1999513.6580	1999517.5390	1999514.4780	1996655.8820	1996655.0830	1996650.0240	1996649.0390	1996645.4140	1996639.2300	1996631.8980	1996627.4310	1996627.5770	1996623.2360	1996618.4230	1996614.0370	1996629.5950	1996635.3190	1996639.8760	1996639.8510	1996477.6630	1996495.5100	1996526.0680	1996549.9990	1996605.2260	1996654.2150	1996670.5800	1996706.6890	1996736.0260	1996774.7210
5	East	774792.7900	774806.6520	774808.9610	774778.3050	774781.4950	774778.9080	774741.3950	778970.6600	778956.5960	778932.6030	780902.3680	780896.1590	780881.8080	780874.6560	780859.6050	780835.3970	780810.6890	780799.1090	780797.7650	780771.1320	780751.4870	780729.0860	780706.9690	780699.9440	780689.8750	780689.6000	780796.7070	780813.3890	780834.1650	780864.6630	780870.3980	780874.0590	780872.0450	780851.9080	780844.9940	780819.0590
	sample No.	BR-1	BR-2	BR-3	BR-4	BR-5	BR-6	BR-7	BR-8	BR-9	BR-10	BR-PPROF-1	BR-PPROF-2	BR-PPROF-3	BR-PPROF-4	BR-PPROF-5	BR-PPROF-6	BR-PPROF-7	BR-PPROF-8	BR-PPROF-9	BR-PPROF-10	BR-PPROF-11	BR-PPROF-12	BR-PPROF-13	BR-PPROF-14	BR-PPROF-15	BR-PPROF-16	BR-PROF-1	BR-PROF-2	BR-PROF-3	BR-PROF-4	BR-PROF-5	BR-PROF-6	BR-PROF-7	BR-PROF-8	BR-PROF-9	BR-PROF-10

Complete No.	D	ITM	Elevation	Geologic	Ĩ	N.1.0		200	N.1:0		Ctout Time	Fad Time
sample No.	East	North	(m)	Code	neg		296	neg		Sec	Start Hme	
BR-PROF-11	780792.5640	1996841.3690	7.32		18	2	31.044490	41	39	8.212370	12/05/2014 11:37	12/05/2014 11:37
C-TER-1	780800.4160	1996154.9550	3.96	۵	18	2	8.729700	41	39	8.144600	12/05/2014 12:13	12/05/2014 12:13
C-TER-2	780832.9690	1996149.7520	4.54		18	2	8.545390	41	39	9.248100	12/05/2014 12:20	12/05/2014 12:20
C-TER-3	780849.3550	1996207.5350	6.57		18	2	10.415930	41	39	9.832990	12/05/2014 12:22	12/05/2014 12:22
C-TER-4	780860.0340	1996226.2030	7.50	BR	18	2	11.017720	41	39	10.204940	12/05/2014 12:23	12/05/2014 12:23
C-TER-5	780853.1960	1996239.3960	7.41	BR	18	2	11.449760	41	39	9.979030	12/05/2014 12:23	12/05/2014 12:23
C-TER-6	780826.2170	1996278.6640	7.08	BR	18	2	12.738700	41	39	9.081500	12/05/2014 12:25	12/05/2014 12:25
C-TER-7	780805.5560	1996264.6450	5.82	BR	18	2	12.292650	41	39	8.372680	12/05/2014 12:26	12/05/2014 12:26
C-TER-8	780754.7290	1996238.3410	4.50	U	18	2	11.461370	41	39	6.632920	12/05/2014 12:28	12/05/2014 12:28
C-TER-9	780701.8240	1996256.7340	3.53	υ	18	2	12.083880	41	39	4.844360	12/05/2014 12:29	12/05/2014 12:29
C-TER-10	780667.7730	1996251.6500	3.44	C	18	2	11.934470	41	39	3.684920	12/05/2014 12:30	12/05/2014 12:30
GMN-538	773202.0830	2008172.8610	7.32		18	8	42.873380	41	34	55.689770		
SLVL-1	780121.0270	1997233.1930	0.00		18	2	44.093160	41	38	45.585560	12/05/2014 12:46	12/05/2014 12:46
SLVL-2	780103.3000	1997219.4470	0.00		18	2	43.654630	41	38	44.976520	12/05/2014 12:51	12/05/2014 12:51
SLVL-3	780094.1140	1997210.0270	0.00		18	2	43.352690	41	38	44.659800	12/05/2014 12:51	12/05/2014 12:51
SS	780889.1220	1996655.2950	8.61	SS	18	2	24.951320	41	39	11.402430	12/05/2014 11:42	12/05/2014 11:42
toct-1	772822.0370	2007012.6390	3.33		18	8	5.333170	41	34	42.215280	12/05/2014 09:00	12/05/2014 09:00
toct-2	772859.0800	2007028.7830	2.96		18	8	5.841070	41	34	43.482350	12/05/2014 09:01	12/05/2014 09:01
toct-3	772879.5720	2007053.6510	3.68		18	8	6.640070	41	34	44.190880	12/05/2014 09:02	12/05/2014 09:02
toct-4	772901.3640	2007092.5710	3.85		18	8	7.895250	41	34	44.950340	12/05/2014 09:03	12/05/2014 09:03
toct-5	772951.7650	2007133.2800	3.87		18	8	9.195550	41	34	46.683260	12/05/2014 09:04	12/05/2014 09:04
toct-6	772715.1810	2007052.1860	4.75		18	8	6.667330	41	34	38.601280	12/05/2014 09:25	12/05/2014 09:25
toct-7	772728.6540	2007064.0620	5.27		18	8	7.047240	41	34	39.065000	12/05/2014 09:26	12/05/2014 09:26

CONTINUED
AlBirk St3C
. GPS9:
Appendix 2

	01.010.0											
	D	TM	Elevation	Geologic	200		500	200	A1:00		Ctott Time	End Time
oul alubic	East	North	(m)	Code	neg		Sec	ueg	IVIII	ספר		
BASE-1	759876.8180	2036813.4840	4.64		18	24	19.860120	41	27	35.732590		
OMG-1	759868.0050	2036805.2100	4.58	BR	18	24	19.595030	41	27	35.428650	12/05/2014 14:36	12/05/2014 14:37
OMG-2	759854.3140	2036778.7170	4.54	BR	18	24	18.739850	41	27	34.950180	12/05/2014 14:37	12/05/2014 14:38
OMG-3	759890.6240	2036750.9360	5.07	BR	18	24	17.820760	41	27	36.173840	12/05/2014 14:39	12/05/2014 14:39
OMG-4	759902.5710	2036779.1850	4.85	BR	18	24	18.733770	41	27	36.593730	12/05/2014 14:40	12/05/2014 14:40
OMG-5	759921.1380	2036792.8900	5.09	BR	18	24	19.171100	41	27	37.232320	12/05/2014 14:41	12/05/2014 14:41
OMG-6	759938.4430	2036803.5410	5.19	BR	18	24	19.509720	41	27	37.826530	12/05/2014 14:42	12/05/2014 14:42
OMG-7	759957.7290	2036839.6770	5.22	BR	18	24	20.675920	41	27	38.500000	12/05/2014 14:43	12/05/2014 14:43
OMG-8	759929.6880	2036867.6660	5.08	BR	18	24	21.598120	41	27	37.558030	12/05/2014 14:44	12/05/2014 14:44
0MG-9	759939.4850	2036894.1020	5.19	BR	18	24	22.453190	41	27	37.903870	12/05/2014 14:45	12/05/2014 14:45
OMG-10	759944.0500	2037019.8320	5.02	BR	18	24	26.538350	41	27	38.117410	12/05/2014 14:47	12/05/2014 14:47
OMG-11	759936.0510	2036996.7580	5.22	BR	18	24	25.791800	41	27	37.834360	12/05/2014 14:48	12/05/2014 14:48
OMG-12	759930.6220	2036966.2900	5.34	BR	18	24	24.803730	41	27	37.635390	12/05/2014 14:49	12/05/2014 14:49
OMG-13	759920.4710	2036945.9420	5.29	BR	18	24	24.146760	41	27	37.280330	12/05/2014 14:49	12/05/2014 14:49
OMG-14	759912.0290	2036915.1370	5.33	BR	18	24	23.149080	41	27	36.978590	12/05/2014 14:50	12/05/2014 14:50
OMG-15	759904.4460	2036883.3860	5.26	BR	18	24	22.120260	41	27	36.705710	12/05/2014 14:51	12/05/2014 14:51
OMG-16	759891.3500	2036858.2950	5.07	BR	18	24	21.310420	41	27	36.248140	12/05/2014 14:52	12/05/2014 14:52
OMG-17	759883.3340	2036834.3070	5.03	BR	18	24	20.534150	41	27	35.964090	12/05/2014 14:52	12/05/2014 14:53
OMG-18	759876.3790	2036818.6910	4.85	BR	18	24	20.029590	41	27	35.720050	12/05/2014 14:53	12/05/2014 14:53
SLVL-1	758350.0790	2037090.5790	-0.01		18	24	29.539150	41	26	43.868700	12/05/2014 15:02	12/05/2014 15:02
SLVL-2	758274.4020	2037022.8370	-0.01		18	24	27.370170	41	26	41.260460	12/05/2014 15:04	12/05/2014 15:04
SLVL-3	758271.8650	2037019.5390	0.01		18	24	27.264060	41	26	41.172550	12/05/2014 15:05	12/05/2014 15:05
SLVL-4	758269.5590	2037016.1180	0.01		18	24	27.153870	41	26	41.092440	12/05/2014 15:05	12/05/2014 15:05
difference in	location by ±0.	5 m										

Appendix 2. GPS10: North OMG--CONTINUED

Appendix 2.	. GPS11: Qar	nahCONTIN	IUED									
Composition No.	UTM	Zone37	Elevation	Geologic	200	A.:	, J	200	ndi.	503	Ctout Time	End Timo
sample No.	East	North	(m)	Code	neg		296	neg		Sec	Start Hme	
BASE-1	784336.452	1989567.456	11.80025		17	58	32.95636	41	41	5.041		
BR-T-1	784274.446	1989522.34	5.19625	BR	17	58	31.5191	41	41	2.91284	12/06/2014 09:18	12/06/2014 09:18
BR-T-2	784285.677	1989510.492	5.34725	BR	17	58	31.12873	41	41	3.28848	12/06/2014 09:19	12/06/2014 09:19
BR-T-3	784298.769	1989500.858	5.40325	BR	17	58	30.80942	41	41	3.72838	12/06/2014 09:19	12/06/2014 09:20
BR-T-4	784312.81	1989490.913	5.68425	BR	17	58	30.47958	41	41	4.20038	12/06/2014 09:20	12/06/2014 09:20
BR-T-5	784330.995	1989480.568	5.88425	BR	17	58	30.13478	41	41	4.81295	12/06/2014 09:21	12/06/2014 09:21
BR-T-6	784355.942	1989469.332	6.09125	BR	17	58	29.75784	41	41	5.65471	12/06/2014 09:22	12/06/2014 09:22
BR-T-7	784349.212	1989453.621	5.50225	BR	17	58	29.25034	41	41	5.41841	12/06/2014 09:22	12/06/2014 09:22
BR-T-8	784372.875	1989449.818	6.25925	BR	17	58	29.11561	41	41	6.22024	12/06/2014 09:23	12/06/2014 09:23
BR-T-9	784383.158	1989439.285	6.32225	BR	17	58	28.76841	41	41	6.56433	12/06/2014 09:23	12/06/2014 09:23
BR-T-10	784374.838	1989420.35	5.54525	BR	17	58	28.15688	41	41	6.27241	12/06/2014 09:24	12/06/2014 09:24
BR-T-11	784405.489	1989413.374	5.93225	BR	17	58	27.91569	41	41	7.31001	12/06/2014 09:25	12/06/2014 09:25
BR-T-12	784394.82	1989399.232	5.58225	BR	17	58	27.46108	41	41	6.9407	12/06/2014 09:25	12/06/2014 09:25
HAB048	784281.963	1989517.569	5.36525	POTTERY	17	58	31.36049	41	41	3.1658	12/06/2014 09:16	12/06/2014 09:16
HOL ST MD	784374.766	1989449.616	6.10425		17	58	29.10814	41	41	6.28437	12/06/2014 09:30	12/06/2014 09:30
SLVL-1	782067.279	1990855.726	-0.03675		17	59	15.89317	41	39	48.59807	12/06/2014 09:50	12/06/2014 09:50
SLVL-2	782058.123	1990849.425	-0.00375		17	59	15.69265	41	39	48.284	12/06/2014 09:51	12/06/2014 09:51
SLVL-3	782049.673	1990845.146	-0.00475		17	59	15.55752	41	39	47.99486	12/06/2014 09:51	12/06/2014 09:51
SLVL-4	782038.669	1990840.791	0.04525		17	59	15.42109	41	39	47.61897	12/06/2014 09:52	12/06/2014 09:52

\sim
\Box
ш
\leq
Z
=
Z
5
\circ
()
Y
÷
<u> </u>
σ
~
σ
Ä
\circ
-
-
in
<u>v</u> ,
Δ.
U.
_
r N
~ ~
•
ž
CD
ž

Coral reef structure of the Farasan Islands

Appendix 3. Farasan Station 3 (Ras Shida) DGPS measurements located on a Google Earth map