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Preface

The Red Sea is unique in all respects, including its tectonic history, environment and biology.
It is a young ocean basin that along its length has undergone or is undergoing the transition
from a continental rift to true oceanic seafloor spreading, the nature of which is still open to
vigorous debate. In addition, due to its semi-enclosed nature and location within an arid
region, the environment is affected by high evaporation rates that together with limited contact
with the Indian Ocean results in high temperatures and salinities. Lower sea levels in the past
have also led to extensive evaporite deposition within its basin, while brines and metallic
deposits in the axial deeps have been the subject of considerable research; the metalliferous
muds may be exploited at some stage in the future. The conditions in the Red Sea have in turn
governed the flora and fauna in the sea and along the coast, notable among which are the
extensive coral reefs that fringe the sea. The adjacent areas are undergoing rapid development
that together with the associated changes are placing some stress on the environment in many
areas.

Various topics, from the geology to the past and present environment and the effects of
human activities are examined in this volume, which aims to present the current thinking and
summaries of research in each field of study. Each chapter aims to give a reasonably com-
prehensive overview of its subject matter, including useful reference lists for further study.
The chapters in the volume were presented at a workshop held in Jeddah, Saudi Arabia, from
February 3 to February 5, 2013, under the auspices of the Saudi Geological Survey (SGS). We
wish to thank Dr. Said J. Alqahtani of Jubran Holding for assistance in funding the work-
shop. The support of the Survey in the preparation of this volume is greatly appreciated, and
we would like to thank all those who have been involved in its production. We would
especially like to thank Dr. Zohair A. Nawab, President, Dr. Abdullah M. Alattas, Assistant
President, Mr. Abdullah F. Al-Khattabi, Chief Geologist and Mr. Nasir S. Aljahdli, Director,
Survey Department of the Saudi Geological Survey for their encouragement in planning this
volume. Colleagues at the SGS Center for Marine Geology, and Mr. Louiesito Abalos are also
thanked for making the workshop a success. The contributions of the many technical referees
to improving the contents of the chapters as well as the assistance of Ms. Radhika Sree of
Springer and Dr. Geoff Bailey in preparing this volume for publication are also greatly
appreciated.

Najeeb M.A. Rasul
Ian C.F. Stewart
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The Evolution of the Red Sea as a Human
Habitat During the Quaternary Period

Geoff Bailey

Abstract
This chapter summarises current knowledge about the deep history of human occupation in the
Arabian Peninsula and more specifically examines the likely role of the Red Sea escarpment
and coastal region both as a major zone of human occupation in early prehistory and as a key
pathway for the movements of people and the transmission of cultural ideas between Africa
and Eurasia. This is a highly topical issue in the international literature at present both because
of new archaeological investigations that are providing new dates for early Stone Age
settlements in various parts of the Arabian Peninsula and because of genetic studies that
highlight the southern Red Sea and southern Arabian Peninsula as a major ‘corridor’ of early
human settlement and connection between Africa and Asia. The time range of these processes
covers at least the past 150,000 years and could extend to 1 million years or more and
therefore places a high premium on new understandings about the impact of climate change,
sea-level change and other geological processes on the suitability of different areas of the
Arabian landscape for human settlement and dispersal. This chapter discusses the archaeo-
logical and climatic evidence for Quaternary occupation, the effect of sea-level changes on the
possibility of sea crossings of the southern Red Sea, the evidence for coastal archaeological
settlements demonstrating early human interest in the exploitation of marine resources and
seafaring, and new investigations in the Farasan Islands region that are searching for traces of
submerged landscapes and archaeological sites formed at periods of lower sea level.

Introduction

The Red Sea coastal region and western escarpment of the
Arabian Peninsula form the gateway between the African
continent and the rest of the world. As such, they are of
pivotal importance in understanding the great narrative of
human dispersal from an original homeland in Africa. All
the evidence currently available in the form of human fos-
sils, stone tools, geochronology and genetic evidence shows
that all human populations distributed throughout the world
today had an origin that is deeply rooted in Africa, and that
during the Quaternary period1 there have been at least two

major episodes of human expansion out of Africa (Oppen-
heimer 2003; Bellwood 2013). The first, associated with the
genus Homo (Homo ergaster or Homo erectus), took place
after about 2 million years ago, resulting in the expansion of
these archaic human populations across southern Europe and
Asia, extending from southern Britain in the west to
Northeast China, and southwards as far as Indonesia (Grine
et al. 2009). A second major dispersal occurred with the
development in Africa of anatomically modern humans
(AMH), Homo sapiens sapiens (White et al. 2003), who are
thought to have evolved from earlier archaic populations in
Africa and then dispersed across the Old World, replacing

G. Bailey (&)
Department of Archaeology, University of York, King’s Manor,
York YO1 7EP, UK
e-mail: geoff.bailey@york.ac.uk

1 The Quaternary period is defined as beginning at 2.58 million years
and comprises two epochs, the Pleistocene, lasting until 11,500 cal BP
(calibrated radiocarbon years before present), marking the conventional
end of the Last Ice Age, and the Holocene, marking the period up to the
present day (Gibbard et al. 2010).
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the pre-existing populations there, such as the Neanderthals,
possibly with some admixture (Green et al. 2010), and
expanding further than before to colonise the cold high lat-
itudes of northern Eurasia, the Americas and the southern
continent of Sahul (Australia, New Guinea and Tasmania).

Yet the Arabian Peninsula has been persistently dis-
counted as an attraction to very early human settlement,
except for a narrow corridor through the Sinai Peninsula in
the north, on the grounds that the Red Sea would have acted
as a barrier further south and that the extensive desert and
semi-arid conditions of the interior would have been a fur-
ther disincentive to human occupation. However, it has long
been known that wetter conditions with lakes and extensive
grasslands periodically and repeatedly spread across the
desert interior during the past 2 million years and more
(Edgell 2006; Vincent 2008), and the possibility of a
‘southern corridor’ across the southern end of the Red Sea,
perhaps at a time when a land crossing was possible during
periods of low sea level, has also been raised, particularly for
AMH dispersal (Lahr and Foley 1994).

AMH dispersal must have occurred after about
200,000 years ago (the earliest date for currently known
AMH remains in Africa), and before about 50,000 years ago,
which is when modern humans first reached Australia.
Moreover, the entry into Sahul involved sea crossings over
distances of at least 60 km, which implies the use of simple
boats or rafts and some skill in seafaring clearly linked to
familiarity with marine resources such as fish and shellfish
(O’Connell et al. 2010; O’Connor 2010; O’Connor et al.
2011). This has given rise to the hypothesis that the earliest
populations to depart from Africa also had these skills and
used them to facilitate dispersal along coastlines, across
other sea barriers such as the southern end of the Red Sea,
and around the rim of the Indian Ocean into the Indian
subcontinent and Southeast Asia, an hypothesis of dispersal
frequently linked, on the basis of indirect inference from
mapping of genetic relationships among present-day popu-
lations, to a date of 60,000 years ago (Stringer 2000; Walter
et al. 2000; Macaulay et al. 2005; Mellars 2006; Mellars
et al. 2013). However, the basis for this hypothesis has been
strongly contested on both archaeological and genetic
grounds (Bailey 2009; Petraglia 2012; Boivin et al. 2013).
The pathway of AMH dispersal into the Arabian Peninsula,
whether via the Sinai Peninsula in the north or across the
southern end of the Red Sea, the date of its occurrence,
whether at 60,000 or earlier, and the mode of dispersal,
whether or not involving some degree of dependence on
marine resources and seafaring, are all matters of opinion in
need of further investigations and observations.

The language used in describing these patterns of human
expansion sometimes implies that they represented ‘events’,
involving purposeful migrations of people trekking (or
sailing) over long distances with some distant goal in view,

involving a time span of decades or centuries, rather on the
analogy of the earliest Europeans to enter North America in
the C17th AD. However, this is likely to be a misconception
in most cases. The expansion of the human habitat and the
colonisation of new territory visible in the archaeological
record are better viewed as a long-term process involving
incremental range extensions of small social groups and their
offspring into adjacent areas to fill the available habitat and
involving many human generations and perhaps many
hundreds or even thousands of years to accomplish the
colonisation of new territory on a continental scale. The
actual rate of expansion would, of course, have been deter-
mined in the first instance by the natural rate of population
increase, but even very slow rates of population growth
would have populated large areas quite rapidly on Quater-
nary timescales given suitable environmental conditions.
The term ‘dispersal’ is more appropriate for such a process.

Another issue is the question of whether human popula-
tions would only have expanded beyond some pre-existing
limit when driven to do so by a deterioration of environ-
mental conditions within their existing habitat (e.g. Carto
et al. 2009). Climate change during the Quaternary is clearly
a major variable that is likely to have influenced patterns of
early human evolution and dispersal (Maslin and Christen-
sen 2007; DeMenocal 2011). However, populations are
more likely to have expanded when environmental and cli-
matic conditions improved, making larger areas available for
human settlement, and to have contracted when conditions
worsened, although examples of the latter could also occur
and have been invoked, for example, in the first colonisation
of the island of Cyprus by seafarers seeking new offshore
resources during the climatic downturn of the Younger
Dryas some 11,000 years ago (Ammerman et al. 2011).
More potent facilitating or delaying factors would have been
the availability of favourable environments with familiar
resources in adjacent terrain, the adaptability of the pre-
existing populations and their capacity to cope with new
resources and environmental conditions, and the presence of
physical, climatic and environmental barriers to further
expansion. These barriers, in their turn, are likely to have
changed significantly on Quaternary timescales because of
changes in climate and changes of topography and palae-
ogeography brought about by changes in sea level, volca-
nism and tectonic activity (Petraglia and Rose 2009;
Petraglia et al. 2011; Bailey and King 2011; Lambeck et al.
2011; Bosworth, this volume). All of these variable factors
—of climate, sea level and tectonics—would have been
powerfully active in the Red Sea and Arabian context.

The aim of this chapter is to summarise current knowl-
edge about the deep history of human occupation in the
Arabian Peninsula, the nature of changes in climate and sea
level and their likely impact on the accessibility and suit-
ability of the region for human occupation and the likely role
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of the Red Sea escarpment and coastal region as a major
zone of human occupation, as a source of terrestrial and
marine food resources and as a key pathway for the move-
ments of people and the transmission of cultural ideas
between Africa and Eurasia. Particular attention will focus
on sea-level change, since this affects the likelihood of sea
crossings at the southern end of the Red Sea, the visibility of
coastal archaeological evidence, and also the varying pro-
ductivity of the Red Sea as a source of marine resources for
human consumption. It also affects the evidence for coastal
archaeological settlements demonstrating early human
interest in the exploitation of marine resources and seafaring.
Also discussed here are new investigations in the Farasan
Islands region that are searching for traces of submerged
landscapes and archaeological sites formed at lower periods
of sea level.

Quaternary Archaeology

Geographically speaking, the Arabian Peninsula forms a key
stepping stone between Africa and Eurasia (Fig. 1), and one
would expect an early history of Stone Age occupation, with
human populations entering the Peninsula from the north via
the Sinai Peninsula, or from the south across the southern
end of the Red Sea. In fact, early Stone Age material has
long been known. The Comprehensive Archaeological Sur-
vey Program of Saudi Arabia (CASP), which took place
during the late 1970s and 1980s (Zarins et al. 1979, 1980,
1981), and the work of American and Russian archaeologists
working at about the same time (Whalen et al. 1983, 1984,
1986, 1988; Amirkanov 1991), demonstrated the presence of
many finds of Stone Age artefacts, indicating a human

Fig. 1 Map of the Arabian Peninsula showing major geological and geographical features and distribution of Stone Age find spots (courtesy of
Maud Devès)
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presence extending well back into the Pleistocene. However,
until very recently, the significance of this material was not
widely appreciated, mainly because the great majority of the
stone artefacts are surface finds without stratigraphic integ-
rity or accurate and reliable radiometric dates, and because
of the assumption that the main pathways for human dis-
persal and cultural transmission between Africa and Asia
were always through the Sinai–Levantine land corridor to
the North and that semi-arid to desert conditions would have
inhibited dispersal into the Arabian Peninsula. In the past
decade, however, different areas of the Arabian Peninsula
have opened up to exploration, resulting in a number of new
and important finds and new dates (Fig. 1).

The Stone Age material in the Arabian Peninsula falls
into two broad categories. First, there are a number of find
locations with Lower Palaeolithic or Early Stone Age
material of Acheulean type showing obvious similarities to
Acheulean sites in Africa and the Near East, with large
cores, simple flaking techniques, bifacially flaked hand axes
and cleavers. Some of these sites are extensive with many
thousands of stone tools, particularly at the Wadi Fatimah in
the western Arabian escarpment, associated with a major
river system, and at Dawadmi in the arid interior, where the
material is associated with evidence of former springs (Pe-
traglia et al. 2009). A number of uranium-series dates at the
site of Saffaqah at Dawadmi give a date range of 60–
204,000 years on calcrete attached to the stone artefacts,
giving a very approximate and minimum age for their
manufacture. Otherwise, this material can only be dated by
analogy with similar sites in Africa and the Near East and on
that basis may be as early as 1.4 million years, though Pe-
traglia et al. (2009) suggest that the bulk of the material may
date from 800,000 years onwards. This material is clearly
associated with an early episode or episodes of human
expansion out of Africa, though whether dispersal occurred
via the North or the South cannot be determined from the
available archaeological evidence.

A second category of finds comprises stone tool assem-
blages of Middle Stone Age or Middle Palaeolithic type,
characterised by more complex and efficient patterns of core
preparation and core reduction to produce regular-shaped
flakes and blades. These sites include Jubbah in the north of
Saudi Arabia, where Stone Age material has been found in
stratigraphic context alongside a now-dry lake in the Nefud
Desert, with optically stimulated luminescence (OSL) dates
of the associated sand sediments of 75,000 years (Petraglia
et al. 2011). The stone tools include material that is typical
of Middle Palaeolithic or Middle Stone Age technology
found widely across the Near East and North Africa,
including Levallois cores, a distinctive technology for
removing successive flakes of predetermined shape from a
specially prepared nodule, some of which are retouched
along the edge to form notched and denticulated pieces. At

Jebel Faya in the United Arab Emirates, a sequence of stone
tool industries has been found in deposits originally accu-
mulated in the mouth of a rock shelter, with earliest OSL
dates of about 125,000 years (Armitage et al. 2011). The
earliest stone tool assemblage here includes a Middle Pal-
aeolithic Levallois technology with the addition of bifacially
flaked leaf-shaped pieces that show some similarities with
contemporaneous assemblages in Northeast Africa. Aybut
Al Auwal in Oman is one of a number of sites located on the
Nejd plateau in Oman (Rose et al. 2011). Here, the stone
tools are associated with fluvial gravels dated by OSL to
107,000 years and include distinctively shaped Levallois
cores known as Nubian cores, with close parallels to material
of similar age in the desert oases of the Eastern Sahara, the
Nile Valley and the Red Sea Hills, but with nothing com-
parable in the Levant. Finally, at Shi’bat Dihya in the Wadi
Surdud of Yemen, a stone tool assemblage has been found
associated with alluvial sediments dated by OSL at about
55,000 years (Delagnes et al. 2012). Here, the technology
involved a type of prepared-core reduction to produce flakes
and blades for tool use, but using a simpler pattern of flake
removals than that used in the classic Levallois technique.
Similar stone tool industries of a similar age have been
found in the upper levels of the Jebel Faya sequence. These
later industries have no obvious parallels in Africa or the
Levant, or elsewhere, as yet, in Arabia, and have been
interpreted as evidence for the development of more local-
ised cultural traditions resulting from increased localisation
and isolation of human populations during the more arid
climatic conditions at the height of the Last Glacial (MIS 3
and MIS 2), approximately from about 60,000 to
20,000 years (Armitage et al. 2011; Delagnes et al. 2012).

Quaternary Climate Change

A critical variable affecting the likelihood of early human
occupation is climate change, particularly increases in pre-
cipitation. Many of these early Stone Age sites are found in
the desert interior in regions that have too little surface water
today to support human life without modern technological
aids. It is clear from this fact, and from the presence of fossil
tufas indicating former spring activity, dried up lake beds
and wadis filled with alluvial sediments indicating much
greater stream competence than today, that conditions must
have been periodically wetter in the past, allowing the spread
of grasslands, grazing mammals and human hunters into the
desert interior and multiplying the pathways for movements
and contact across the Peninsula from the Red Sea escarp-
ment to the Gulf Coast. Mapping of palaeochannels, dating
of lake sediments and analyses of proxy climate indicators in
speleothem sequences are beginning to create a clearer pic-
ture of the temporal and spatial pattern of climate variability,
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at least for the last 350,000 years (McClure 1976; Schultz
and Whitney 1986; Sanlaville 1992; Parker et al. 2006;
Fleitmann et al. 2007; Parker and Rose 2008; Parker 2009;
Crassard et al. 2013; Rosenberg et al. 2013; Fig. 2).

The principal driver of climate change in the Arabian
Peninsula during the Quaternary was shifts in the inter-
tropical convergence zone (ITCZ) associated with the gla-
cial–interglacial cycle, which led periodically to northward
incursion of the Indian Ocean monsoon (IOM) weather
system. Today, rainfall associated with the IOM falls mainly
on the southern edge of the Arabian Peninsula, especially in
the coastal regions of Oman, and extends as far north as
Jizan in Saudi Arabia, with high rainfall over the Asir and
Yemeni highlands in the southwest. This northward shift
during the Pleistocene brought increased rainfall to present-
day desert regions throughout Arabia, activating networks of
stream channels and creating numerous shallow lakes of
greater or lesser extent across desert regions such as the Rub
al-Khali, the Mundafan Basin and the Nafud in the north. An
additional influence may have been the extension south-
wards of the Mediterranean cyclonic system, bringing winter
rainfall into areas further south than is the case today.

The onset, timing and duration of these wetter episodes
are matters of ongoing investigation. As a very general rule,
there is a broad correlation between the marine isotope curve
and increased precipitation, with the wettest conditions in
interglacials (odd-numbered MIS) and maximum aridity in
glacial periods (even-numbered MIS). But when sufficient
dates are available, the pattern in detail appears more com-
plex. Over the past 130,000 years, there is a clear and strong
correlation between wetter periods and the early part of the
interglacial cycle, in MIS 5e at 130–120 ka, and again in the
early Holocene (the early part of MIS 1) from about 11.5–
6 ka (Fig. 2). The latter part of the Last Interglacial, MIS 5a,
82–74 ka was also wet. MIS 4 witnessed the onset of

increased aridity but was punctuated by at least one wetter
interval at 61–58 ka (Parton et al. 2013). During MIS 3,
associated with progressive onset of Northern Hemisphere
glaciation, the position is less clear. The predominant cli-
matic signal is one of increased aridity, reaching its peak at
the Last Glacial Maximum at 22 ka, but a number of wet
intervals have been claimed between 40 ka and 20 ka and a
short-lived wetter phase at about 15–13 ka on the basis of
radiocarbon-dated alluvial and lacustrine sediments (see, in
particular, Parker 2009 for details). However, more recent
OSL dating of lacustrine sediments does not show any evi-
dence of these wetter intervals (Crassard et al. 2013;
Rosenberg et al. 2013), and it appears that the radiocarbon
dates are unreliable because of contamination by younger
carbon. Going further back in time, both the MIS 7 and MIS
9 interglacials were associated with wetter conditions indi-
cated by OSL dating of lacustrine sediments and U/Th dat-
ing of speleothems, centred at about 193 ka and 319 ka,
respectively. MIS 6 was another arid period, but one punc-
tuated by brief episodes of increased precipitation at 147,
152, 160, 170 and 174 ka according to Parker (2009). Earlier
still, in the Middle Pleistocene, arid indicators are present
between 700 and 560 ka, and wet indicators between about
560 and 319 ka, but the broad duration of these climatic
zones may be misleading because of scarcity of dates and
cannot be resolved into a more detailed record to compare
with the later part of the Quaternary record. Earlier again,
carbon isotope evidence (δ13C) in Early Pleistocene faunas
associated with palaeolake deposits in the western Nafud
desert indicates an open savannah landscape with lakes,
buffalo and hippopotamus between about 3.5 and 1.2 Ma
(Thomas et al. 1998).

There are difficulties in generalising with confidence and
in detail from this evidence, except perhaps for the very end
of the Quaternary sequence, given the irregular and

Fig. 2 Variations in climate in the Arabian Peninsula over the past
350,000 years (after Parker 2009). The curve represents the probability
of wetter climate intervals based on the number of dated indicators for a

given period. Peaks in the curve represent well-dated wet intervals
rather than unusually wet intervals. Numbered intervals indicate marine
isotope stages. For further details, see Parker (2009)
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generally sparse spatial and chronological sampling of the
climatic record, and the increasing margins of uncertainty
associated with dating methods as one goes further back in
time. It remains unclear to what extent the spot dates for wet
indicators such as lake and river sediments, for example in
MIS 6, represent short-lived wet intervals separated by more
arid conditions, or irregular sampling of the same prolonged
and continuous climatic episode. McClure (1976), on the
basis of radiocarbon dates in the Rub al-Khali, suggested a
duration of about 800 years for these lakes, but these dates
are no longer considered reliable. The more recent OSL
dating work of Rosenberg et al. (2013) suggests relatively
short durations for periods of lake formation, but the margin
of error in the dating method does not allow further refine-
ment. The best chronological indicator comes from annual
laminations of lake sediment in Nafud, which indicate a
duration of about 1,400 years for lake formation during MIS
9. An additional complexity is the possibility that the spread
of wetter conditions induced by the IOM was time trans-
gressive from south to north. Continuous records from
speleothems and the deep-sea marine record are subject to
their own uncertainties, and discrepancies between them and
the discontinuous terrestrial record may reflect either prob-
lems of dating, or divergence of local climate conditions in
particular landscape settings from a generalised climate
curve derived from marine sediments or speleothems.
Allowing for these uncertainties, the broad pattern seems to
be one of persistent and periodic spread of wetter conditions
throughout the Quaternary, with the wettest and longest
intervals occurring during the early part of interglacials, and
perhaps periodic bursts of increased precipitation but of
shorter duration at other times.

Sea-Level Change and Sea Crossings

A factor of potential importance in determining the likely
attractiveness and importance of coastal regions is the pos-
sibility afforded by marine and oceanographic conditions in
the Red Sea for the development of simple methods of
seafaring and the availability of easily accessible marine
resources such as inshore fish and intertidal shellfish. Here,
however, we face a fundamental problem and that is the fact
that for long periods of the Pleistocene epoch under review
here, sea levels were much lower than present. This has
serious implications for reconstructing the position and
configuration of past coastlines and island archipelagos and
hence the need for sea crossings, the nature of varying
oceanographic conditions and their impact on currents and
marine productivity within the Red Sea Basin, and the vis-
ibility of archaeological evidence for human activity on
these ancient but now-submerged shorelines.

The broad pattern of sea-level change over the past
2 million years is now well known. Analysis of oxygen
isotope variations in foraminifera stratified in deep-sea sed-
iments has demonstrated that the isotope signal closely maps
changes in ocean volume in response to the glacial–inter-
glacial cycle of the Quaternary period (Fig. 3). Indeed, one
of the most recent and most detailed sea-level curves comes
from deep-sea sediments in the Red Sea (Siddall et al. 2003).
Here, a detailed pattern of sea-level change has been
reconstructed over the past 400,000 years, using a model of
salinity change resulting from changes in the degree of
mixing between the Red Sea and the Indian Ocean. When
sea level was low, ocean flow into the Red Sea was
restricted, and the salinity of the Red Sea was elevated above
the ocean average because of higher rates of evaporation.
One important consequence of this analysis is to demonstrate

Fig. 3 Variations in eustatic sea level (ocean volume) according to the
deep-sea isotope record over the past 350,000 years. Sources Chappell
and Shackleton (1986), Shackleton (1987), Imbrie et al. (1984),
Lambeck and Chappell (2001), Waelbroek et al. (2002), Sidall et al.
(2003), Lambeck et al. (2011). The dotted part of the curve shows the
original isotope readings and the solid line above it the sea-level curve
after removal of temperature effects from the isotope readings. Shaded
columns give an approximate indication of the relationship between
sea-level position and climate change as derived from Fig. 2. See also
Fig. 6 and the text for further discussion of climate data

604 G. Bailey

geoff.bailey@york.ac.uk



that salinity in the Red Sea over this time range never
reached very high values that would imply evaporation
within a closed basin. In other words, at no time in the past
400,000 years was it possible for people to cross the
southern end of the Red Sea between Northeast Africa and
the Arabian Peninsula across dry land.

In order to pursue these implications, it is necessary to
convert the sea-level curve into maps of shoreline position at
different stages of the glacial–interglacial cycle. This is a
complex procedure and cannot be done simply by mapping
sea-level positions against modern seabed bathymetry,
because the coastal crust has been warped and flexed by
hydro-isostatic loading and unloading of water masses on the
continental shelf, by large-scale propagation of the Red Sea
rift and tectonic uplift of the rift flanks, by localised processes
of salt doming and withdrawal, by variable accumulations of
sediment on the sea bed and by localised volcanic activity
(Bosworth, this volume; Ligi et al., this volume; Hovland
et al., this volume; Pugh and Abualnaja, this volume).
Modelling of these processes in the southern Red Sea,
incorporating all available dates for raised or submerged
beaches throughout the Red Sea region, has been carried out
by Kurt Lambeck working with the Saudi–UK archaeological
team working in the region (Lambeck et al. 2011).

The reconstruction of coastal palaeogeography in the
southern Red Sea, and the data and theoretical models on
which it is based, are set out in detail in Lambeck et al.
(2011) and are only briefly summarised here (see also Pugh
and Abualnaja, this volume). The key sources of required
information are the following: (1) bathymetry of the shal-
lowest part of the southern Red Sea, namely the Hanish Sill;
(2) variations in ocean volume with time (variations in eu-
static sea level); (3) variations in the isostatic loading of the
Red Sea region over time and in different parts of the Red
Sea region; (4) earth model parameters on the thickness and
viscosity of the underlying mantle in the Red Sea region,
which determine the way in which the Earth’s crust responds
locally to isostatic loading effects; and (5) rates of tectonic
uplift. Variable (1) is known approximately from actual
measurements taken by Werner and Lange (1975) and the
minimum depth is 137 m, although the possibility of deeper
channels cannot be excluded (Lambeck et al. 2011,
pp. 3570–3571). Variable (2) is known from information on
raised shorelines in far-field locations such as Western
Australia where isostatic and tectonic effects are absent or
independently known and can be further corroborated
against the marine isotopic record of changes in ice volume.
Isostatic deformation, variable (3), is usually associated with
regions close to the continental ice sheets of the Northern
Hemisphere, where crustal depression by ice sheets and
rebound following deglaciation (glacio-isostatic) can elevate
shorelines by hundreds of metres. In more distant locations
such as the Red Sea, the glacio-isostatic effect is small

though not entirely absent and is supplemented by additional
effects resulting from the loading and unloading of water
masses on the continental shelf (hydro-isostatic effects).
These effects can be modelled, taking into account glacio-
isostatic effects and the best available data on hydro-isostatic
loading in adjacent sea basins, and can have a significant
impact. Variable (4) is known but with some degree of
uncertainty that can be assessed by applying different
assumptions within a range of likely possibilities. Variable
(5) is the unknown variable in this equation and is estimated
by comparing the position of the shoreline at selected time
intervals (Early Holocene, Last Glacial Maximum, Last
Interglacial), as predicted by isostatic modelling, with the
actual elevation of dated shoreline features. The latter are
represented by a large and somewhat scattered sample of
data points available for this purpose from the Red Sea,
including dates from uplifted coral terraces that are espe-
cially prominent in the northern Red Sea, coral reefs or other
shoreline features that are close to the present shoreline
elevation and some that are now submerged. Any resulting
differences between predicted and observed shoreline ele-
vations can be used to estimate the effect of tectonic uplift
associated with long-term rifting, and this amounts to at least
0.1 mm year−1 (or 1 m per ten thousand years) in the
northern Red Sea. Once these adjustments have been made,
they can be applied to the reconstruction of shoreline con-
figurations at selected time intervals and in different regions.

The shortest sea crossing at modern sea level today is
about 29 km across the Bab-al-Mandab Strait, a crossing that
is almost impossible except with seaworthy boats and nav-
igational skills, something that is generally assumed by
archaeologists to have been feasible only during recent
millennia. However, palaeogeographic modelling shows that
a narrow channel would have extended for about 100 km
from the Bab-al-Mandab Strait in the south to the Hanish
Islands in the north and that the shallowest part of the
channel is over the Hanish Sill (Fig. 4). Moreover, the shape
of the channel in the Hanish region is such that for more than
half the period of time encompassed by a single glacial
cycle, that is to say whenever sea level was lower than 50 m
below present, for a period of about 60,000 years in every
100,000 year cycle, sea crossings of about 4 km or less were
possible via small islands in the Hanish region (Fig. 5).
During these periods of lower sea level, crossings via island
hopping across the Hanish Sill could easily have been
accomplished with little risk by swimming or simple rafting.
This greatly increases the likelihood of human crossings,
whether by accident or intention, not only over an extensive
proportion of the past 250,000 years, but much further back
into human prehistory.

Further research is needed on the precise bathymetry of
the channel region of the Hanish Sill to test in more detail
these palaeogeographical reconstructions and the models on
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which they are based. More well-dated palaeoshoreline
features, whether from submerged shorelines that are now
under water, or from raised coral reefs such as the impressive
sequence visible at Umm Lajj in the north (Vincent 2008,
Fig. 2.3), are also needed to refine and test the models.
Another question is the effect that the formation of a long
and constricted channel at lowered sea level between the
Bab-al-Mandab and the Hanish Islands would have had on
tidal currents and the extent to which these would have been
faster and more hazardous for human sea crossings. Answers
to this question must remain speculative for the moment, but
new research on palaeotidal modelling is now under way
that may help to constrain the likely pattern of sea currents
during these periods of lower sea level (Lambeck, pers.
comm., September 2013).

It is of interest to compare the periods when sea crossings
would have been most easily feasible with minimal tech-
nology, as identified by the above reconstructions, and those
periods of increased rainfall when the territory available for

human occupation would have been most attractive and most
extensive (Fig. 6). The comparisons can only be approxi-
mate because of uncertainties in the dating and duration of
some of the climatic intervals and smoothing effects in the
drawing of the sea-level curve. Of course, the absence of
easy sea crossings in the south during periods of favourable
climate would not have deterred a human presence in the
Arabian Peninsula, since entry into the Peninsula and dis-
persal within it would always have been possible from the
north via the Sinai route. The point is that a conjunction of
favourable climates and easy sea crossings would have
afforded the maximum opportunities for dispersal and
interpopulation contact between Africa and Arabia, whereas
the absence of one or the other, and even more so the
absence of both, would have tended to reinforce bottlenecks
in dispersal and regional isolation. On these grounds, the
most striking feature of Fig. 6 is that periods of wetter cli-
mate and periods of easy sea crossing are almost largely
mutually exclusive. A favourable conjunction of

Fig. 4 Map showing the position
of palaeoshorelines at the
southern end of the Red Sea
during the maximum sea-level
low stand at the Last Glacial
Maximum. The shortest sea
crossings at this period would
have been in the region of the
Hanish Sill, via the Haycock
Islands, as shown by the black
line (after Lambeck et al. 2011)
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circumstances may have occurred in the wetter intervals of
MIS 5 but only for very short intervals. The longest period
of overlap occurred in MIS 6, between about 140 and
180 ka, if Parker’s (2009) dates are followed, but these wet
intervals are not recorded in Rosenberg et al.’s (2013) data.
Interestingly, the most favourable climatic periods during the
interglacials of MIS 1, 5e, 7 and 9 and the late glacial epi-
sodes in MIS 2 appear to be periods when sea crossings
would have been most difficult or would have required
skilful seafaring abilities. Least favourable periods, com-
bining maximum aridity with high sea levels, appear to be
rare, the most notable example being the latter part of MIS 1
(the Late Holocene after about 6 ka), and perhaps part of
MIS 7, but the climate record is incomplete in this period to
say nothing of earlier MIS stages. Other periods of combined
aridity and high sea level may have existed, but they are
either disguised by poor resolution in the dating, or else they
were of short duration.

Coastal Archaeological Sites and Offshore
Landscapes

Sea-level change is not only of importance in narrowing the
crossing distances between opposite shorelines. It also has
two additional archaeological consequences. First, any evi-
dence for the use of marine resources and a maritime way of
life must be invisible except during periods of high sea level
like the present. Palaeoshorelines formed when sea level was
lower than the present are now deeply submerged and some
distance offshore, and we can only expect to see archaeo-
logical evidence of coastal settlements and use of marine

Fig. 5 Cross section of the Hanish Sill region. The cross section is
marked by the black line in Fig. 4. The upper diagram shows the effect
of channel geometry on sea crossing distances at different sea-level
positions and the lower diagram the periods when short sea crossings
would have been possible during the past 120,000 years (after Lambeck
et al. 2011)

Fig. 6 A comparison of wet periods when climatic conditions would
have been most favourable and sea level stands sufficiently lowered to
facilitate easy sea crossings at the southern end of the Red Sea over the
past 350,000 years. Blue short sea crossings; Green wetter climates;
Pink overlap of periods with short sea crossings and wetter climates.
Climate data are taken from Fig. 2, modified according to the more
recent work of Rosenberg et al. (2013) and data on sea crossings from
Lambeck et al. (2011)
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resources on or near the present-day coastline for periods of
high sea level such as those that have existed during the past
6,000 years, or during earlier periods of high sea level such
as MIS 5e about 130,000 years ago. Coastal shell mounds,
which are the most durable and visible archaeological indi-
cator of coastal settlement, appear in their tens of thousands
on many coastlines of the world from about 6,000 years ago
onwards (Bailey et al. 2013a). Coastal sites, mainly cave
deposits, with stone tools and evidence of shell gathering
and other marine resources such as bones of fish and sea
mammals, are also known from the high-sea-level periods of
MIS 5 and 4, notably in South Africa, together with smaller
quantities of shells in the 160,000 year-old deposits of
Pinnacle Point (Erlandson 2001; Jerardino and Marean
2010). Sites in the intervening period are very rare and are
confined to coastal caves adjacent to steeply shelving off-
shore topography, where the shoreline remained close even
during periods of low sea level, or to coastlines in high
latitudes where the land has undergone very substantial
glacio-isostatic uplift, notably in Norway and Alaska (Bailey
and Flemming 2008). This problem of missing coastal sites
is a worldwide problem, not confined only to the Red Sea,
and increasing attention is now being devoted to underwater
investigation and the search for submerged landscapes and
coastal archaeological sites in many parts of the world
(Benjamin et al. 2011; Evans et al. 2014).

Secondly, lowered sea levels would have exposed
extensive areas of land available for human occupation,
especially in the southern Red Sea, where the continental
shelf is quite shallow (Fig. 7). Here, an additional increment
of land some 100 km wide extended seaward of the present
coastline, and there was a similar extension of land on the
African side offshore of Eritrea. Both shelves host a con-
centration of islands—the Dahlak Islands on the Eritrean
side, and the Farasan Islands on the Saudi Arabian side,
formed by salt tectonics, which would presumably have
projected as a clump of low hills in this extensive coastal
terrain when sea level was lower. Moreover, both theoretical
considerations (Faure et al. 2002) and inspection of the
available bathymetry suggest that this now-submerged
landscape may have been quite attractive for plant and ani-
mal life, and hence for humans, because of a complex
topography with fault-bounded basins, extensive spring lines
and accumulation of groundwater in solution hollows, pro-
viding attractive conditions in these coastal regions even
during periods of relatively arid climate.

We are now exploring these ideas through new investi-
gations in the region of the Farasan Islands. These islands
were connected to the mainland when sea level was about
50 m below present or lower. Their archaeological interest
stems from the fact that there are more than 3,000 coastal
archaeological sites, most of them shell middens, but cov-
ering a wide range of site types from surface finds with few

or a limited scatter of shells to large mounds up to 5 m high,
some of which contain almost nothing but discarded mollusc
shells, while others include remains of fish bones and land
mammals in addition to the mollusc shells (Bailey et al.
2013b; Fig. 8). These are not to be confused with the
Farasan Banks, which are further to the north, or the ‘shell
banks’ of the geological literature (Dabbagh et al. 1984).
They are not natural deposits of shells thrown up by storms
but the remains of settlements of prehistoric coastal peoples
who collected the marine molluscs for food and perhaps also
for fish bait. These sites began forming at or soon after about
6,000 years ago and clearly relate to the establishment of
modern sea level. As such, they are recent in date, but at the
same time, they give a useful insight into the visible
archaeological features that are associated with a fully
maritime way of life involving seafaring, fishing and shell
gathering among other activities. They are a useful bench-
mark for the sorts of evidence that we would expect to see in
relation to hypotheses for the existence much further back in
the prehistoric period of maritime peoples around the
coastlines of the Red Sea and the Arabian Peninsula, given

Fig. 7 Enhanced satellite imagery of the southern Red Sea showing
the position of the Farasan Islands, and the extent of the submerged
landscape at maximum sea-level regression during glacial periods, and
the general nature of the seabed topography. ASTER GDEM is a
product of METI and NASA (courtesy of Maud Devès)
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that consumption of molluscs was a universal accompani-
ment to shoreline settlement or activity in the Arabian con-
text and that in any case, the shells of the molluscs are the
primary factor giving visibility to shoreline activity of
whatever type.

The majority of the sites are on the large islands of
Farasan Kabir and Saqid, but there are also shell mounds on
the island of Qumah and on some of the smaller islets to the
north of Farasan (Fig. 9). The largest mounds are up to
4–5 m high and the largest extend for hundreds of metres
along the shoreline. The bulk of these shell deposits appear
to have been formed between about 6,000 and 5,000 years
ago. Later deposits also exist, extending up to the Islamic
era, but these are thinner shell deposits or shell scatters, often
associated with remains of buildings made from naturally
cemented beach rock or coral. The reasons for this difference
in volume of shell deposits remain unclear, but part of the
explanation may have to do with the existence of an eco-
logical window of opportunity for extensive beds of marine
molluscs in shallow embayments that came into being for
only a short period and were then subsequently filled in with
sand.

Excavations show that the shell mounds comprise a wide
range of shallow water and intertidal molluscan species
variously associated with sandy substrates or coral reefs. The
dominant species is a small gastropod, Strombus fasciatus,
but other common species are the large gastropods, Pleu-
roploca trapezium and Chicoreus ramosus, and bivalve
species such as Chama reflexa, Spondylus marisrubri and
Pinctada sp. Extensive ash layers are interleaved with the
shell deposits, representing the remains of fireplaces, and fish
bones and the bones of gazelle have also been recovered
from some shell layers, along with very rare and isolated
finds of stone tools and potsherds.

Fig. 8 Shell mound in Janaba
Bay on the main island of
Farasan, showing the position of
the shell mound on a modern
shoreline undercut by marine
erosion (photograph by Hans
Sjoeholm 2006)

Fig. 9 Distribution of shell mounds on the Farasan Islands. The
number and density of sites is such that they cannot be shown
individually on a map of this scale. Instead, a more or less continuous
line is used to provide a representation of the distribution. Sites that
appear to be inland of the present-day shoreline are located on
palaeoshorelines that are now located inland because of tectonic uplift
and sediment infilling of shallow bays and channels
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The huge quantity of mollusc shells implied by the
number and volume of shell deposits does not necessarily
mean that the mounds were created by very large numbers of
people, or by people who subsisted mainly on shell food.
The amount of food represented by the shells is actually
relatively small, once one takes into account the high ratio of
shell to meat in most shell species, and the time over which
the mounds have accumulated. Detailed measurements show
that the amount of food represented by these large shell
deposits may be as little as 5–10 % of total food intake and
that the impressive appearance of the resulting shell mounds
is mainly the result of the large amounts of debris created by
shell gathering and the durability and resistance to decay of
the dead shells compared with most other food remains or
by-products of human activity.

Since the Farasan shell mounds are clearly late in date, the
question arises as to whether similar evidence can be found or
might be expected in association with earlier periods of high
sea level. An obvious candidate for inspection is the high-
sea-level period of MIS 5e. Walter et al. (2000) have reported
evidence of marine mollusc shells collected as food at the
130,000 year-old site of Abdur on the Eritrean coast in
association with stone tools and mammal bones. Full details
have not been published so that the quantity of material and
the status of the mollusc shells as food items have yet to be
evaluated. Similar sites occur on the Arabian side of the Red
Sea in the vicinity of the extensive lava fields found in the
coastal region of Al Birk. Here, stone tools of Middle Stone
Age and Early Stone Age type have been found on elevated
coral terraces that refer to earlier periods of high sea level,
most probably MIS 5 (Bailey et al. 2007a; Bailey 2009).
However, the artefacts so far recovered are surface finds and
cannot be dated with confidence or associated with remains
of shell food or other subsistence activity. Ecological con-
ditions that allow the accumulation of substantial shell
mounds like those of the Farasan Islands are only patchily
distributed along any given coastline. Moreover, even shells
are vulnerable to fragmentation and dispersal if exposed on
the surface for many millennia. Hence, the absence of thick or
extensive shell deposits on coastlines where stone artefacts
have been found is not decisive refutation of an interest in
marine resources by the stone tool makers. What is needed is
archaeological material in stratified context, where there are
good chances of obtaining geochronological control and
contextual information on environment and subsistence,
including marine shells discarded as food, or other indicators
of marine exploitation. Sites with these features of MIS 5 age
or older are rare, and usually only preserved and recovered in
cave deposits, such as those recorded in South Africa and on
parts of the Mediterranean coastline. Abdur is an exception,
showing that relevant material can be preserved in open-air
locations. The search for similar material in Saudi Arabia is
ongoing (Devès et al. 2013).

An even greater challenge is the question of whether
coastal archaeological material was deposited on palaeo-
shorelines that are now submerged. The fact that the Farasan
shell mounds appear almost exactly at the moment when sea
level stopped rising and shorelines became visible on the
present-day land surface is a strong indicator that earlier
coastal sites could have existed and have escaped discovery
so far for no better reason than that they are now submerged,
and no one has yet gone underwater to look for them. That
possibility, in its turn, demands underwater investigation.
One possible objection to pursuing this hypothesis is that
during periods of lower sea level, the reduced inflow of
water from the Indian Ocean and the resulting increase in
salinity would have inhibited marine productivity and
reduced the availability of marine resources. Sidall et al.
(2003) have identified ‘aplanktonic’ levels in the deep-sea
sediment sequence associated with low-sea-level episodes.
The more general significance of such evidence is unclear.
Many marine species can tolerate conditions of high salinity,
as is clearly demonstrated by the presence of an endemic
marine fauna in the Red Sea that has persisted through many
cycles of sea-level change. That people might have been
deterred from exploiting the resources of the sea during the
periods of low sea level, such as those of early MIS 1, and
MIS 2–4, because marine resources were absent is highly
speculative and can only be tested by searching under water
for relevant evidence. In any case, whether or not people
present in the region during periods of lowered sea level
took an interest in marine resources or ignored them, it is
certain that an extensive terrestrial landscape would have
existed with potential for the pursuit of plant and animal
resources on land. There is, therefore, a strong imperative for
underwater exploration from a number of points of view.

Since 2006, we have been pursuing underwater investi-
gations alongside archaeological survey on land in the
Farasan Islands and on the Gizan mainland (Bailey et al.
2007a, b; Devès et al. 2013; Alsharekh and Bailey 2014).
Experimental deep diving in 2006, with the help of Saudi
Aramco and its vessel the M/V Midyan as an offshore
platform, demonstrated that palaeoshorelines do exist
underwater and can be identified as potential targets for more
detailed investigation (Figs. 10 and 11). We also conducted
diving work in shallow water in 2008 and 2009, including
exploration and excavation of underwater caves and under-
cut palaeoshorelines. This work is slow and painstaking. The
way in which the original landscape and its associated
archaeology were transformed by inundation and sea-level
rise is not yet well understood. Many sites may be washed
away, degraded or buried beneath marine sediments. Others
may be well preserved because of a complex topography that
provided protection from the full force of wave action during
inundation or by burial beneath marine sediment followed
by subsequent partial erosion and exposure. We know from
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extensive underwater investigations elsewhere that under-
water features can be preserved, often with excellent con-
ditions of organic preservation, and can survive even in
high-energy coastal environments and through several cycles
of sea-level change (Benjamin et al. 2011; Evans et al.
2014).

There is every reason to suppose that similar features are
preserved in the Red Sea region. The next essential step in
underwater exploration is to examine the seabed more
extensively in the Farasan region for traces of palaeoshore-
lines and other topographic features, using the full range of
modern technological aids including seismic and acoustic

Fig. 10 Palaeoshoreline showing
characteristic features at a depth
of about 20 m (photograph by
Hans Sjoeholm 2006)

Fig. 11 A diver recording
features and collecting samples
from a submerged
palaeoshoreline during a deep
dive to a depth of over 60 m using
mixed gas (trimix) technology
(photograph by Trevor Jenkins
2006)
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recording, remotely operated vehicles, and sediment coring.
Suitable equipment has now been sourced for this phase of
investigation, and a preliminary survey took place in June
2013 using the facilities of the R/V Aegaeo of the Hellenic
Centre for Marine Research. The survey carried out a series
of transects extending from the edge of the continental shelf
to shallower channels between the Farasan Islands and the
Gizan mainland. Surveys included multibeam bathymetry to
characterise seabed topography, sub-bottom profiling to
identify geological and geomorphological structures such as
faulting and sediment thickness, a side-scan survey to
highlight surface anomalies, the use of a remotely operated
vehicle with cameras for visual inspection and the collection
of a large sample of sediment cores. It is too early to report
in detail on that survey, but preliminary results indicate that
the landscape that was exposed when sea level was low was
a landscape of considerable topographic complexity, with
fault-bounded basins that trapped water and sediment, deep
solution hollows that could also have collected freshwater
and an extensive network of drainage channels.

It is axiomatic that when climate change resulted in the
extension of wetter and greener conditions into the desert
interior, those improved conditions would have applied also
to coastal regions. Conversely, when the interior became
uninhabitable because of increased aridity, coastal regions
would have remained relatively well-watered because of
capture of orographic rainfall on the Red Sea escarpment and
the presence of high water tables and springs. In short,
coastal regions would always have been attractive relative to
the desert interior, regardless of climatic conditions, and
especially during more arid climatic episodes, providing the
stable, core regions of human settlement from which popu-
lations would have periodically expanded into the interior or
retreated again according to the pattern of climatic change as
summarised in Fig. 6. As is clear from this diagram, many
periods of arid climate coincided with low sea levels, and so
did some of the wetter episodes, including the Early Holo-
cene wet period, when sea levels were rising at the end of the
last glaciation but were still as much as 50 m below the
present. If this hypothesis of relative coastal attractiveness is
correct, then we should expect archaeological sites to occur
in greater number in coastal regions than in the interior,
regardless of whether marine resources were part of the
coastal subsistence economy or not, and with greater per-
sistence, both when sea level was high and when it was low.
During periods of low sea level, the coastline of the southern
Red Sea shifted by as much as 100 km seaward of its present
position, exposing an extensive coastal region with many
potential attractions for human settlement including relative
abundance of water supplies and terrestrial plant and animal
resources. This is likely to have shifted the geographical
focus of human population to the now-submerged land-
scapes of the region. This in its turn reinforces the need for

underwater investigation, without which we will remain in
ignorance about the nature of these submerged landscapes,
the records they contain of changes in palaeoenvironment,
palaeoclimate and sea level, and of course their archaeo-
logical significance in illuminating a long and crucial period
of human history in the Arabian Peninsula.

Conclusion

During the past decade, there has been a steady increase in
field surveys and investigations of the Stone Age prehistory
of the Arabian Peninsula including the Red Sea region and
of palaeoenvironmental and palaeoclimatic investigations
directed by archaeological questions or relevant to them.
These investigations are highlighting the central geographi-
cal importance of the Arabian Peninsula in the earliest stages
of human prehistory and its role in creating the foundations
for later developments in more recent millennia. They
indicate that fluctuations in climate and sea level have
periodically expanded the opportunities for human settle-
ment and dispersal throughout the Arabian Peninsula and
then contracted them, providing a highly dynamic context
for the early history of human settlement. As the primary
gateway of human contact between Africa and Eurasia, the
Red Sea region is of particular interest and importance. New
research includes surveys for Stone Age archaeological sites
dating far back into the Quaternary, studies of palaeoclimate
from onshore and offshore sediment sequences and speleo-
thems and studies of sea-level change and its palaeogeo-
graphical and marine–oceanographic consequences,
excavation of coastal shell mounds, underwater exploration
of submerged landscapes and palaeoshorelines, and
improved geochronological control. This intersection of
many different scientific interests provides a potentially
fertile ground for interdisciplinary collaboration and a need
for such collaboration if new hypotheses and lines of future
enquiry are to be pursued effectively.
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